Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 141363, 11 pages
http://dx.doi.org/10.1155/2015/141363
Research Article

KIR Genes and Patterns Given by the A Priori Algorithm: Immunity for Haematological Malignancies

1Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava No. 8, Zona Universitaria, 78290 San Luis Potosí, ZC, Mexico
2Laboratorio de Genómica Viral y Humana, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Venustiano Carranza No. 2405, Colonia Filtros las Lomas, 78210 San Luis Potosí, CP, Mexico

Received 27 May 2015; Revised 5 August 2015; Accepted 9 August 2015

Academic Editor: Lei Chen

Copyright © 2015 J. Gilberto Rodríguez-Escobedo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Auffray and L. Hood, “Systems biology and personalized medicine—the future is now,” Biotechnology Journal, vol. 7, no. 8, pp. 938–939, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Trevino, F. Falciani, and H. A. Barrera-Saldaña, “DNA microarrays: a powerful genomic tool for biomedical and clinical research,” Molecular Medicine, vol. 13, no. 9-10, pp. 527–541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Yong, “Cancer biomarkers: written in blood,” Nature, vol. 511, no. 7511, pp. 524–526, 2014. View at Publisher · View at Google Scholar
  4. K. A. McAulay and R. F. Jarrett, “Human leukocyte antigens and genetic susceptibility to lymphoma,” Tissue Antigens, vol. 86, no. 2, pp. 98–113, 2015. View at Publisher · View at Google Scholar
  5. A. M. Dickinson and J. Norden, “Non-HLA genomics: does it have a role in predicting haematopoietic stem cell transplantation outcome?” International Journal of Immunogenetics, vol. 42, no. 4, pp. 229–238, 2015. View at Publisher · View at Google Scholar
  6. P. Jia and Z. Zhao, “Network-assisted analysis to prioritize GWAS results: principles, methods and perspectives,” Human Genetics, vol. 133, no. 2, pp. 125–138, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Gelmann, C. Sawyers, and F. Rauscher II, Molecular Oncology: Causes of Cancer and Targets for Treatment, Cambridge University Press, 2014.
  8. V. Litwin, J. Gumperz, P. Parham, J. H. Phillips, and L. L. Lanier, “Specificity of HLA class I antigen recognition by human NK clones: evidence for clonal heterogeneity, protection by self and non-self alleles, and influence of the target cell type,” Journal of Experimental Medicine, vol. 178, no. 4, pp. 1321–1336, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Moretta, C. Bottino, D. Pende et al., “Identification of four subsets of human CD3-CD16+ natural killer (NK) cells by the expression of clonally distributed functional surface molecules: correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition,” Journal of Experimental Medicine, vol. 172, no. 6, pp. 1589–1598, 1990. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Robinson, K. Mistry, H. Mcwilliam, R. Lopez, and S. G. E. Marsh, “Ipd-the immuno polymorphism database,” Nucleic Acids Research, vol. 38, supplement 1, pp. D863–D869, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. C.-W. Pyo, L. A. Guethlein, Q. Vu et al., “Different patterns of evolution in the centromeric and telomeric regions of group A and B haplotypes of the human killer cell Ig-like receptor locus,” PLoS ONE, vol. 5, no. 12, Article ID e15115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Hollenbach, I. Nocedal, M. B. Ladner, R. M. Single, and E. A. Trachtenberg, “Killer cell immunoglobulin-like receptor (KIR) gene content variation in the HGDP-CEPH populations,” Immunogenetics, vol. 64, no. 10, pp. 719–737, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Trowsdale, “Genetic and functional relationships between MHC and NK receptor genes,” Immunity, vol. 15, no. 3, pp. 363–374, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. K. C. Hsu, S. Chida, D. E. Geraghty, and B. Dupont, “The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism,” Immunological Reviews, vol. 190, pp. 40–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. R. B. Herberman, M. E. Nunn, H. T. Holden, and D. H. Lavrin, “Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells,” International Journal of Cancer, vol. 16, no. 2, pp. 230–239, 1975. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Kiessling, E. Klein, and H. Wigzell, “‘Natural’ killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype,” European Journal of Immunology, vol. 5, no. 2, pp. 112–117, 1975. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Kiessling, E. Klein, H. Pross, and H. Wigzell, “‘Natural’ killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell,” European Journal of Immunology, vol. 5, no. 2, pp. 117–121, 1975. View at Publisher · View at Google Scholar
  18. R. T. Costello, C. Fauriat, S. Sivori, E. Marcenaro, and D. Olive, “NK cells: innate immunity against hematological malignancies?” Trends in Immunology, vol. 25, no. 6, pp. 328–333, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Ruggeri, M. Capanni, M. Casucci et al., “Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation,” Blood, vol. 94, no. 1, pp. 333–339, 1999. View at Google Scholar · View at Scopus
  20. S. Cooley, E. Trachtenberg, T. L. Bergemann et al., “Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia,” Blood, vol. 113, no. 3, pp. 726–732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. M. Davies, L. Ruggieri, T. DeFor et al., “Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Killer immunoglobulin-like receptor,” Blood, vol. 100, no. 10, pp. 3825–3827, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Gagne, G. Brizard, B. Gueglio et al., “Relevance of KIR gene polymorphisms in bone marrow transplantation outcome,” Human Immunology, vol. 63, no. 4, pp. 271–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Giebel, F. Locatelli, T. Lamparelli et al., “Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors,” Blood, vol. 102, no. 3, pp. 814–819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. K. C. Hsu, T. Gooley, M. Malkki et al., “KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy,” Biology of Blood and Marrow Transplantation, vol. 12, no. 8, pp. 828–836, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Stringaris, S. Adams, M. Uribe et al., “Donor KIR Genes 2DL5A, 2DS1 and 3DS1 are associated with a reduced rate of leukemia relapse after HLA-identical sibling stem cell transplantation for acute myeloid leukemia but not other hematologic malignancies,” Biology of Blood and Marrow Transplantation, vol. 16, no. 9, pp. 1257–1264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. J. Symons, M. S. Leffell, N. D. Rossiter, M. Zahurak, R. J. Jones, and E. J. Fuchs, “Improved survival with inhibitory killer immunoglobulin receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation,” Biology of Blood and Marrow Transplantation, vol. 16, no. 4, pp. 533–542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Ruggeri, M. Capanni, E. Urbani et al., “Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants,” Science, vol. 295, no. 5562, pp. 2097–2100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. P. H. Basse, T. L. Whiteside, W. Chambers, and R. B. Herberman, “Therapeutic activity of NK cells against tumors,” International Reviews of Immunology, vol. 20, no. 3-4, pp. 439–501, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Gansuvd, M. Hagihara, Y. Yu et al., “Human umbilical cord blood NK T cells kill tumors by multiple cytotoxic mechanisms,” Human Immunology, vol. 63, no. 3, pp. 164–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. J. Smyth, K. Y. T. Thia, S. E. A. Street et al., “Differential tumor surveillance by natural killer (NK) and NKT cells,” Journal of Experimental Medicine, vol. 191, no. 4, pp. 661–668, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Rosner, Fundamentals of Biostatistics, Duxbury Press, Pacific Grove, Calif, USA, 6th edition, 2006.
  32. J. Ignizio, Introduction to Expert Systems, McGraw-Hill, 1991.
  33. J. C. Cuevas Tello, D. Hernández-Ramírez, and C. A. García-Sepúlveda, “Support vector machine algorithms in the search of KIR gene associations with disease,” Computers in Biology and Medicine, vol. 43, no. 12, pp. 2053–2062, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Besson, S. Roetynck, F. Williams et al., “Association of killer cell immunoglobulin-like receptor genes with Hogkin's lymphoma in a familial study,” PLoS ONE, vol. 2, no. 5, article e406, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Shahsavar, N. Tajik, K.-Z. Entezami et al., “KIR2DS3 is associated with protection against acute myeloid leukemia,” Iranian Journal of Immunology, vol. 7, no. 1, pp. 8–17, 2010. View at Google Scholar · View at Scopus
  36. L. Karabon, A. Jedynak, S. Giebel et al., “KIR/HLA gene combinations influence susceptibility to B-cell chronic lymphocytic leukemia and the clinical course of disease,” Tissue Antigens, vol. 78, no. 2, pp. 129–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Q. Wu, Y. M. Zhao, X. Y. Lai et al., “The beneficial impact of missing KIR ligands and absence of donor KIR2DS3 gene on outcome following unrelated hematopoietic SCT for myeloid leukemia in the Chinese population,” Bone Marrow Transplantation, vol. 45, no. 10, pp. 1514–1521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. K. Gandhi, J. T. Tellam, and R. Khanna, “Epstein-Barr virus-associated Hodgkin's lymphoma,” British Journal of Haematology, vol. 125, no. 3, pp. 267–281, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules between sets of items in large databases,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 207–216, Washington, DC, USA, May 1993. View at Scopus
  40. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowledge discovery in databases,” in Advances in Knowledge Discovery and Data Mining, pp. 1–34, American Association for Artificial Intelligence, Menlo Park, Calif, USA, 1996. View at Google Scholar
  41. P. Ning-Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, Addison-Wesley, 2006.
  42. J. Schmidhuber, “Deep learning in neural networks: an overview,” Neural Networks, vol. 61, pp. 85–117, 2015. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Lin, W. Chen, C. Qiu, Y. Wu, S. Krishnan, and Q. Zou, “LibD3C: ensemble classifiers with a clustering and dynamic selection strategy,” Neurocomputing, vol. 123, pp. 424–435, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Ganganwar, “An overview of classification algorithms for imbalanced datasets,” International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 4, pp. 42–47, 2012. View at Google Scholar
  45. C. A. García-Sepúlveda, E. Carrillo-Acuña, S. E. Guerra-Palomares, and M. Barriga-Moreno, “Maxiprep genomic DNA extractions for molecular epidemiology studies and biorepositories,” Molecular Biology Reports, vol. 37, no. 4, pp. 1883–1890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. D. L. Alvarado-Hernández, D. Hernández-Ramírez, D. E. Noyola, and C. A. García-Sepúlveda, “KIR gene diversity in Mexican mestizos of San Luis Potosí,” Immunogenetics, vol. 63, no. 9, pp. 561–575, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, Calif, USA, 1993.
  48. B. Liu, W. Hsu, and Y. Ma, “Integrating classification and association rule mining,” in Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, August 1998.
  49. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software: an update,” SIGKDD Explorations, vol. 11, no. 1, 2009. View at Publisher · View at Google Scholar
  50. https://www.gnu.org/software/octave/.
  51. Statsoft, “STATISTICA,” 2014, http://www.statsoft.com/.