Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 485495, 12 pages
http://dx.doi.org/10.1155/2015/485495
Research Article

Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy -Means Clustering

1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, Shenzhen 518055, China
2University of Chinese Academy of Sciences, 52 Sanlihe Road, Beijing 100864, China
3Faculty of Computers and Information, Mansoura University, Elgomhouria Street, Mansoura 35516, Egypt

Received 29 September 2015; Accepted 23 November 2015

Academic Editor: Jesús Picó

Copyright © 2015 Ahmed Elazab et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Sharma and L. M. Aggarwal, “Automated medical image segmentation techniques,” Journal of Medical Physics, vol. 35, no. 1, pp. 3–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Elazab, Q. Hu, F. Jia, and X. Zhang, “Content based modified reaction-diffusion equation for modeling tumor growth of low grade glioma,” in Proceedings of the 7th Cairo International Biomedical Engineering Conference (CIBEC ’14), pp. 107–110, Giza, Egypt, December 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. D. L. Pham, C. Xu, and J. L. Prince, “Current methods in medical image segmentation,” Annual Review of Biomedical Engineering, vol. 2, pp. 315–337, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Despotović, B. Goossens, and W. Philips, “MRI segmentation of the human brain: challenges, methods, and applications,” Computational and Mathematical Methods in Medicine, vol. 2015, Article ID 450341, 23 pages, 2015. View at Publisher · View at Google Scholar
  5. S. Ruan, C. Jaggi, J. Xue, J. Fadili, and D. Bloyet, “Brain tissue classification of magnetic resonance images using partial volume modeling,” IEEE Transactions on Medical Imaging, vol. 19, no. 12, pp. 1172–1186, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32–57, 1973. View at Publisher · View at Google Scholar · View at MathSciNet
  7. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Advanced Applications in Pattern Recognition, Springer, Boston, Mass, USA, 1981. View at Publisher · View at Google Scholar
  8. M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, “A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data,” IEEE Transactions on Medical Imaging, vol. 21, no. 3, pp. 193–199, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Szilagyi, Z. Benyo, S. M. Szilagyi, and H. S. Adam, “MR brain image segmentation using an enhanced fuzzy C-means algorithm,” in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 724–726, Cancun, Mexico, September 2003. View at Publisher · View at Google Scholar
  10. S. Chen and D. Zhang, “Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure,” IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, vol. 34, no. 4, pp. 1907–1916, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Cai, S. Chen, and D. Zhang, “Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation,” Pattern Recognition, vol. 40, no. 3, pp. 825–838, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  12. M.-S. Yang and H.-S. Tsai, “A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction,” Pattern Recognition Letters, vol. 29, no. 12, pp. 1713–1725, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Krinidis and V. Chatzis, “A robust fuzzy local information C-means clustering algorithm,” IEEE Transactions on Image Processing, vol. 19, no. 5, pp. 1328–1337, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. M. Gong, Y. Liang, J. Shi, W. Ma, and J. Ma, “Fuzzy C-means clustering with local information and kernel metric for image segmentation,” IEEE Transactions on Image Processing, vol. 22, no. 2, pp. 573–584, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. M. A. Balafar, “Gaussian mixture model based segmentation methods for brain MRI images,” Artificial Intelligence Review, vol. 41, no. 3, pp. 429–439, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Nikou, N. P. Galatsanos, and A. C. Likas, “A class-adaptive spatially variant mixture model for image segmentation,” IEEE Transactions on Image Processing, vol. 16, no. 4, pp. 1121–1130, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. A. R. Ferreira da Silva, “A Dirichlet process mixture model for brain MRI tissue classification,” Medical Image Analysis, vol. 11, no. 2, pp. 169–182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. M. Nguyen and Q. M. J. Wu, “Fast and robust spatially constrained gaussian mixture model for image segmentation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 4, pp. 621–635, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. S. P. Chatzis and T. A. Varvarigou, “A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 5, pp. 1351–1361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Chatzis, “A method for training finite mixture models under a fuzzy clustering principle,” Fuzzy Sets and Systems, vol. 161, no. 23, pp. 3000–3013, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  21. Z. Ji, J. Liu, G. Cao, Q. Sun, and Q. Chen, “Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation,” Pattern Recognition, vol. 47, no. 7, pp. 2454–2466, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Li, C. Xu, A. Anderson, and J. C. Gore, “MRI tissue classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework,” in Information Processing in Medical Imaging: 21st International Conference, IPMI 2009, Williamsburg, VA, USA, July 5–10, 2009. Proceedings, vol. 5636 of Lecture Notes in Computer Science, pp. 288–299, Springer, Berlin, Germany, 2009. View at Publisher · View at Google Scholar
  23. C. Li, J. C. Gore, and C. Davatzikos, “Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation,” Magnetic Resonance Imaging, vol. 32, no. 7, pp. 913–923, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Szilágyi, “Lessons to learn from a mistaken optimization,” Pattern Recognition Letters, vol. 36, no. 1, pp. 29–35, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learning,” The Annals of Statistics, vol. 36, no. 3, pp. 1171–1220, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  26. K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, “An introduction to kernel-based learning algorithms,” IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 181–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. C. R. Souza, Kernel Functions for Machine Learning Applications, 2010, http://crsouza.com/2010/03/kernel-functions-for-machine-learning-applications/.
  28. U. Vovk, F. Pernuš, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Transactions on Medical Imaging, vol. 26, no. 3, pp. 405–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, and A. C. Evans, “BrainWeb: Online Interface to a 3D MRI Simulated Brain Database,” 2011, http://brainweb.bic.mni.mcgill.ca/brainweb/.
  30. L. He and I. R. Greenshields, “A non-local maximum likelihood estimation method for Rician noise reduction in MR images,” IEEE Transactions on Medical Imaging, vol. 28, no. 2, pp. 165–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Zhang, J. E. Fritts, and S. A. Goldman, “An entropy-based objective evaluation method for image segmentation,” in Proceedings of the Storage and Retrieval Methods and Applications for Multimedia, vol. 5307 of Proceedings of SPIE, pp. 38–49, January 2004. View at Publisher · View at Google Scholar · View at Scopus