Computational and Mathematical Methods in Medicine

Volume 2015, Article ID 802754, 9 pages

http://dx.doi.org/10.1155/2015/802754

## An Efficient Optimization Method for Solving Unsupervised Data Classification Problems

^{1}Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia^{2}Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia

Received 13 March 2015; Revised 11 June 2015; Accepted 29 June 2015

Academic Editor: Andrzej Kloczkowski

Copyright © 2015 Parvaneh Shabanzadeh and Rubiyah Yusof. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.

#### 1. Introduction

Unsupervised data classification (or data clustering) is one of the most important and popular data analysis techniques and refers to the process of grouping a set of data objects into clusters, in which the data of a cluster must have high degree of similarity and the data of different clusters must have high degree of dissimilarity [1]. The aim is to minimize the intercluster distance and maximize the intracluster distance. Clustering techniques have been applied in many areas such as document clustering [2, 3], medicine [4, 5], biology [6], agriculture [7], marketing and consumer analysis [8, 9], geophysics [10], prediction [11], image processing [12–14], security and crime detection [15], and anomaly detection [16].

In clustering problem, a dataset is divided into number of subgroups such that elements in one group are more similar to one another than elements of another group [17]. It can be defined to find out unknown patterns, knowledge, and information from a given dataset which was previously undiscovered using some criterion function [18]. It is NP complete problem when the number of cluster is greater than three [17]. Over the last two decades, many heuristic algorithms have been suggested and it is demonstrated that such algorithms are suitable for solving clustering problems in large datasets. For instance, the Tabu Search Algorithm for the clustering is presented in [19], the Simulated Annealing Algorithm in [20], the Genetic Algorithm in [21], and the particle swarm optimization algorithm in [22], which is one of powerful optimization methods. Fernández Martínez and Garcia-Gonzalo [23–26] clearly explained how PSO family parameters should be chosen close to the second order stability region. Hatamlou et al. in [27] introduced the Big Bang Big Crunch algorithm for the clustering problem. This algorithm has its origin from one of the theories of the evolution of the universe, namely, the Big Bang and Big Crunch theory. An Ant Colony Optimization was developed to solve the clustering problem in [28]. Such algorithms are able to find the global solution to the clustering. Application of the Gravitational Search Algorithm (GSA) [29] for clustering problem has been introduced in [30]. A comprehensive review on clustering algorithms can be found in [31–33].

In this paper, a new heuristic clustering algorithm is developed. It is based on the evolutionary method called the Biogeography-Based Optimization (BBO) method proposed in [34]. The BBO method is inspired from the science of biogeography; it is a population-based evolutionary algorithm. Convergence results for this method and its practical applications can be found in [35]. The algorithm has demonstrated good performance on various optimization benchmark problems [36]. The proposed clustering algorithm is tested on six datasets from UCI Machine Learning Repository [37] and the obtained results are compared with those obtained using other similar algorithms.

The rest of this paper is organized as follows. Section 2 describes clustering problem. A brief overview of the BBO algorithm is given in Section 3. Section 4 presents the clustering algorithm. Experimental results are reported in Section 5. Finally, Section 6 presents conclusions with future research direction.

#### 2. Cluster Analysis

In cluster analysis we suppose that we have been given a set of a finite number of points of -dimensional space , that is , where

In all, clustering algorithms can be classified into two categories, namely, hierarchical clustering and partitional clustering. Partitional clustering methods are the most popular class of center based clustering methods. It has been seen that partitional algorithm is more commendable rather than hierarchical clustering. The advantage of partitional algorithm is its visibility in circumstances where application involving large dataset is used where construction of nested grouping of patterns is computationally prohibited [38, 39]. The clustering problem is said to be hard clustering if every data point belongs to only one cluster. Unlike hard clustering, in the fuzzy clustering problem the clusters are allowed to overlap and instances have degrees of appearance in each cluster [40]. In this paper we will exclusively consider the hard unconstrained clustering problem. Therefore, the subject of cluster analysis is the partition of the set into a given number or disjoint subsets , with respect to predefined criteria such that

Each cluster can be identified by its center (or centroid). To determine the dissimilarity between objects, many distance metrics have been defined. The most popular distance metric is the Euclidean distance. In this research we will also use Euclidean metric as a distance metric to measure the dissimilarity between data objects. So, for given two objects and with -dimensions, the distance is defined by [38] as

Since there are different ways to cluster a given set of objects, a fitness function (cost function) for measuring the goodness of clustering should be defined. A famous and widely used function for this purpose is the total mean-square quantization error (MSE) [41], which is defined as follows: where is the distance between object and the center of cluster to be found by calculating the mean value of objects within the respective cluster.

#### 3. Biogeography-Based Optimization Algorithm

In this section, we give a brief description of the Biogeography-Based Optimization (BBO) algorithm. BBO is a new evolutionary optimization method based on the study of geographic distribution of biological organisms (biogeography) [34]. Organisms in BBO are called species, and their distribution is considered over time and space. Species can migrate between islands which are called habitat. Habitat is characterized by a Habitat Suitability Index (HSI). HSI in BBO is similar to the fitness in other population-based optimization algorithms and measures the solution goodness. HSI is related to many features of the habitat [34]. Considering a global optimization problem and a population of candidate solutions (individuals), each individual can be considered as a habitat and is characterized by its HSI. A habitat with high HSI is a good solution (maximization problem). Similar to other evolutionary algorithms, good solutions share their features with others to produce a better population in the next generations. Conversely, an individual with low fitness is unlikely to share features and likely accept features. Suitability index variable (SIV) implies the habitability of a habitat. As there are many factors in the real world which make a habitat more suitable to reside than others, there are several SIVs for a solution which affect its goodness. A SIV is a feature of the solution and can be imagined like a gene in GA. BBO consists of two main steps: migration and mutation. Migration is a probabilistic operator that is intended to improve a candidate solution [42, 43]. In BBO, the migration operator includes two different types: immigration and emigration, where for each solution in each generation, the rates of these types are adaptively determined based on the fitness of the solution. In BBO, each candidate solution has its own immigration rate and emigration rate as follows:where is the population size and shows the rank of th individual in a ranked list which has been sorted based on the fitness of the population from the worst fitness to the best one ( is worst and is best). Also and are the maximum possible emigration and immigration rates, which are typically set to one. A good candidate solution has latively high emigration rate and allows immigration rate, while the converse is true for a poor candidate solution. Therefore if a given solution is selected to be modified (in migration step), then its immigration rate is applied to probabilistically modify each SIV in that solution. The emigrating candidate solution is probabilistically chosen based on . Different methods have been suggested for sharing information between habitats (candidate solutions), in [44], where migration is defined bywhere is a number between 0 and 1. It could be random or deterministic or it could be proportional to the relative fitness of the solutions and . Equation (5) means that (feature solution) SIV of comes from a combination of its own SIV and the emigrating solution’s SIV. Mutation is a probabilistic operator that randomly modifies a decision variable of a candidate solution. The purpose of mutation is to increase diversity among the population. The mutation rate is calculated in [34] where is the solution probability and , where is the population size and is user-defined parameter.

If is selected for mutation, then the candidate solution is probabilistically chosen based on ; thus replace with a randomly generated SIV. Several options can be used for mutation but one option for implementing that can be defined aswhere

is user-defined parameter near 0 and also are the upper and lower bounds for each decision variable and is random number, normally distributed in the range of (0, 1).

Based on the above description, the main steps of the BBO algorithm can be described as follows.

*Step 1 (initialization). *At first, introduce the initial parameters that include the number of generations, necessary for the termination criterion, population size, which indicates the number of habitats/islands/solutions, number of design variables, maximum immigration and emigration rates, and mutation coefficient and also create a random set of habitats (population).

*Step 2 (evaluation). *Compute corresponding HSI values and rank them on the basis of fitness.

*Step 3 (update parameters). *Update the immigration rate and emigration rate for each island/solution. Bad solutions have low emigration rates and high immigration rates whereas good solutions have high emigration rates and low immigration rates.

*Step 4 (select islands). *Probabilistically select the immigration islands based on the immigration rates and select the emigrating islands based on the emigration rates via roulette wheel selection.

*Step 5 (migration phase). *Randomly change the selected features (SIVs), based on (4)–(5) and based on the selected islands in the previous step.

*Step 6 (mutation phase). *Probabilistically carry out mutation based on the mutation probability for each solution, that is, based on (6).

*Step 7 (check the termination criteria). *If the output of the termination criterion step is not met, go to Step 2; otherwise, terminate it.

#### 4. BBO Algorithm for Data Clustering

In order to use BBO algorithm for data clustering, one-dimensional arrays are used to encode the centres of the desired clusters to present candidate solutions in the proposed algorithm. The length of the arrays is equal to , where is the number of clusters and is the dimensionality of the considered datasets. Figure 1 presents an example of candidate solution for a problem with centroids clusters and attributes.