Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2016 (2016), Article ID 2796186, 9 pages
http://dx.doi.org/10.1155/2016/2796186
Review Article

Modeling Radiotherapy Induced Normal Tissue Complications: An Overview beyond Phenomenological Models

Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy

Received 14 July 2016; Accepted 23 October 2016

Academic Editor: David A. Winkler

Copyright © 2016 Marco D’Andrea et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Moiseenko, J. Battista, and J. Van Dyk, “Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme,” International Journal of Radiation Oncology Biology Physics, vol. 46, no. 4, pp. 983–993, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. E. D. Yorke and D. Ellen, “Modeling the effects of inhomogeneous dose distributions in normal tissues,” Seminars in Radiation Oncology, vol. 11, no. 3, pp. 197–209, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. E. P. Philippens, L. A. M. Pop, A. G. Visser, S. A. M. W. Schellekens, and A. J. van der Kogel, “Dose-volume effects in rat thoracolumbar spinal cord: an evaluation of NTCP models,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 2, pp. 578–590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Van Luijk, H. P. Bijl, A. W. T. Konings, A. J. Van der Kogel, and J. M. Schippers, “Data on dose-volume effects in the rat spinal cord do not support existing NTCP models,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 3, pp. 892–900, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Adamus-Górka, P. Mavroidis, B. K. Lind, and A. Brahme, “Comparison of dose response models for predicting normal tissue complications from cancer radiotherapy: application in rat spinal cord,” Cancers, vol. 3, no. 2, pp. 2421–2443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. E. L. Travis and L. Elizabeth, “Organizational response of normal tissues to irradiation,” Seminars in Radiation Oncology, vol. 11, no. 3, pp. 184–196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Wu, D. Djajaputra, Y. Wu, J. Zhou, H. H. Liu, and R. Mohan, “Intensity-modulated radiotherapy optimization with gEUD-guided dose-volume objectives,” Physics in Medicine and Biology, vol. 48, no. 3, pp. 279–291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Ólafsson, R. Jeraj, and S. J. Wright, “Optimization of intensity-modulated radiation therapy with biological objectives,” Physics in Medicine and Biology, vol. 50, no. 22, pp. 5357–5379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Das, “A role for biological optimization within the current treatment planning paradigm,” Medical Physics, vol. 36, no. 10, pp. 4672–4682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Allen Li, M. Alber, J. O. Deasy et al., “The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM,” Medical Physics, vol. 39, no. 3, pp. 1386–1408, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. L. Lyman, “Complication probability as assessed from dose-volume histograms,” Radiation Research, vol. 104, pp. S13–S19, 1985. View at Google Scholar
  12. B. Emami, J. Lyman, A. Brown et al., “Tolerance of normal tissue to therapeutic irradiation,” International Journal of Radiation Oncology, Biology, Physics, vol. 21, no. 1, pp. 109–122, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Burman, G. J. Kutcher, B. Emami, and M. Goitein, “Fitting of normal tissue tolerance data to an analytic function,” International Journal of Radiation Oncology, Biology, Physics, vol. 21, no. 1, pp. 123–135, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. J. T. Lyman and A. B. Wolbarst, “Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms,” International Journal of Radiation Oncology, Biology, Physics, vol. 13, no. 1, pp. 103–109, 1987. View at Publisher · View at Google Scholar · View at Scopus
  15. J. T. Lyman and A. B. Wolbarst, “Optimization of radiation therapy, IV: a dose-volume histogram reduction algorithm,” International Journal of Radiation Oncology, Biology, Physics, vol. 17, no. 2, pp. 433–436, 1989. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Kutcher and C. Burman, “Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method,” International Journal of Radiation Oncology, Biology, Physics, vol. 16, no. 6, pp. 1623–1630, 1989. View at Publisher · View at Google Scholar
  17. G. J. Kutcher, C. Burman, L. Brewster, M. Goitein, and R. Mohan, “Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations,” International Journal of Radiation Oncology, Biology, Physics, vol. 21, no. 1, pp. 137–146, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Mohan, G. Mageras, L. Brewster, G. Kutcher, S. Leibel, C. Burman et al., “Clinically relevant optimization of 3-D cinformal treatments,” Medical Physics, vol. 19, no. 4, pp. 933–944, 1992. View at Publisher · View at Google Scholar
  19. J. O. Deasy, A. Eisbruch, and R. K. Ten Haken, “Comments on the use of the Lyman-Kutcher-Burman model to describe tissue response to nonuniform irradiation,” International Journal of Radiation Oncology Biology Physics, vol. 47, no. 5, pp. 1458–1460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Luxton, P. J. Keall, and C. R. King, “A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD),” Physics in Medicine and Biology, vol. 53, no. 1, pp. 23–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. E. Drzymala, R. Mohan, L. Brewster et al., “Dose-volume histograms,” International Journal of Radiation Oncology, Biology, Physics, vol. 21, no. 1, pp. 71–78, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Niemierko and M. Goitein, “Dose-volume distributions: a new approach to dose-volume histograms in three-dimensional treatment planning,” Medical Physics, vol. 21, no. 1, pp. 3–11, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Kong, C. Pan, A. Eisbruch, and R. K. T. Haken, “Physical models and simpler dosimetric descriptors of radiation late toxicity,” Seminars in Radiation Oncology, vol. 17, no. 2, pp. 108–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Bentzen, L. S. Constine, J. O. Deasy et al., “Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an Introduction to the Scientific Issues,” International Journal of Radiation Oncology Biology Physics, vol. 76, no. 3, pp. S3–S9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. E. Wheldon, C. Deehan, E. G. Wheldon, and A. Barrett, “The linear-quadratic transformation of dose-volume histograms in fractionated radiotherapy,” Radiotherapy and Oncology, vol. 46, no. 3, pp. 285–295, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. C. S. Park, Y. Kim, K. M. Bucci et al., “Method to account for dose fractionation in analysis of IMRT plans: modified equivalent uniform dose,” International Journal of Radiation Oncology, Biology, Physics, vol. 62, no. 3, pp. 925–932, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Scholz and G. Kraft, “Calculation of heavy ion inactivation probabilities based on track structure, X ray sensitivity and target size,” Radiation Protection Dosimetry, vol. 52, no. 1–4, pp. 29–33, 1994. View at Google Scholar · View at Scopus
  28. R. B. Hawkins, “A statistical theory of cell killing by radiation of varying linear energy transfer,” Radiation Research, vol. 140, no. 3, pp. 366–374, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Guerrero and X. A. Li, “Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy,” Physics in Medicine and Biology, vol. 49, no. 20, pp. 4825–4835, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Park, L. Papiez, S. Zhang, M. Story, and R. D. Timmerman, “Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 3, pp. 847–852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. B. Wolbarst, L. M. Chin, and G. K. Svensson, “Optimization of radiation therapy: integral-response of a model biological system,” International Journal of Radiation Oncology, Biology, Physics, vol. 8, no. 10, pp. 1761–1769, 1982. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Niemierko and M. Goitein, “Modeling of normal tissue response to radiation: the critical volume model,” International Journal of Radiation Oncology, Biology, Physics, vol. 25, no. 1, pp. 135–145, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. E. D. Yorke, G. J. Kutcher, A. Jackson, and C. C. Ling, “Probability of radiation-induced complications in normal tissues with parallel architecture under conditions of uniform whole or partial organ irradiation,” Radiotherapy and Oncology, vol. 26, no. 3, pp. 226–237, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Jackson, G. J. Kutcher, and E. D. Yorke, “Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation,” Medical Physics, vol. 20, no. 3, pp. 613–625, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Stavrev, N. Stavreva, A. Niemierko, and M. Goitein, “Generalization of a model of tissue response to radiation based on the idea of functional subunits and binomial statistics,” Physics in Medicine and Biology, vol. 46, no. 5, pp. 1501–1518, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Fernández and S. Williams, “Closed-form expression for the poisson-binomial probability density function,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 2, pp. 803–817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. W. Feller, Introduction to Probability Theory and Its Applications, vol. 1, John Wiley & Sons, New York, NY, USA, 1968.
  38. T. E. Schultheiss, C. G. Orton, and R. A. Peck, “Models in radiotherapy: volume effects,” Medical Physics, vol. 10, no. 4, pp. 410–415, 1983. View at Publisher · View at Google Scholar · View at Scopus
  39. A. B. Wolbarst, “Optimization of radiation therapy II: the critical-voxel model,” International Journal of Radiation Oncology, Biology, Physics, vol. 10, no. 5, pp. 741–745, 1984. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Rodney Withers, J. M. G. Taylor, and B. Maciejewski, “Treatment volume and tissue tolerance,” International Journal of Radiation Oncology, Biology, Physics, vol. 14, no. 4, pp. 751–759, 1988. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Niemierko and M. Goitein, “Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture,” Radiotherapy and Oncology, vol. 20, no. 3, pp. 166–176, 1991. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Roos, “Binomial approximation to the poisson binomial distribution. The Krawtchouk Expansion,” Theory of Probability and Its Applications, vol. 45, no. 2, pp. 258–272, 2001. View at Publisher · View at Google Scholar
  43. K. P. Choi and A. Xia, “Approximating the number of successes in independent trials: binomial versus poisson,” Annals of Applied Probability, vol. 12, no. 4, pp. 1139–1148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Y. Soon, “Binomial approximation for dependent indicators,” Statistica Sinica, vol. 6, no. 3, pp. 703–714, 1996. View at Google Scholar · View at MathSciNet · View at Scopus
  45. J. H. Hendry and H. D. Thames, “The tissue-rescuing unit,” The British Journal of Radiology, vol. 59, no. 702, pp. 628–630, 1986. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Rutkowska, C. Baker, and A. Nahum, “Mechanistic simulation of normal-tissue damage in radiotherapy—implications for dose-volume analyses,” Physics in Medicine and Biology, vol. 55, no. 8, pp. 2121–2136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Källman, A. Ågren, and A. Brahme, “Tumour and normal tissue responses to fractionated non-uniform dose delivery,” International Journal of Radiation Biology, vol. 62, no. 2, pp. 249–262, 1992. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Kallman, B. K. Lind, and A. Brahme, “An algorithm for maximizing the probability of complication-free tumour control in radiation therapy,” Physics in Medicine and Biology, vol. 37, no. 4, pp. 871–890, 1992. View at Publisher · View at Google Scholar · View at Scopus