Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2016, Article ID 6183679, 10 pages
http://dx.doi.org/10.1155/2016/6183679
Research Article

Influence of PEEK Coating on Hip Implant Stress Shielding: A Finite Element Analysis

1Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Avenida Eugenio Garza Sada 2501, 64849 Monterrey, Mexico
2Escuela de Medicina, Tecnológico de Monterrey, Avenida Eugenio Garza Sada 2501, 64849 Monterrey, Mexico

Received 6 October 2015; Revised 20 January 2016; Accepted 7 February 2016

Academic Editor: Valeri Makarov

Copyright © 2016 Jesica Anguiano-Sanchez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Holzwarth and G. Cotogno, JCR Scientific and Policy Reports—Total Hip Arthroplasty, European Commission, 2012.
  2. S. Kurtz, K. Ong, E. Lau, F. Mowat, and M. Halpern, “Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030,” The Journal of Bone & Joint Surgery—American Volume, vol. 89, no. 4, pp. 780–785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. A. Oshkour, N. A. A. Osman, M. Bayat, R. Afshar, and F. Berto, “Three-dimensional finite element analyses of functionally graded femoral prostheses with different geometrical configurations,” Materials and Design, vol. 56, pp. 998–1008, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Huiskes, H. Weinans, H. J. Grootenboer, M. Dalstra, B. Fudala, and T. J. Slooff, “Adaptive bone-remodeling theory applied to prosthetic-design analysis,” Journal of Biomechanics, vol. 20, no. 11-12, pp. 1135–1150, 1987. View at Publisher · View at Google Scholar · View at Scopus
  5. M. G. Joshi, S. G. Advani, F. Miller, and M. H. Santare, “Analysis of a femoral hip prosthesis designed to reduce stress shielding,” Journal of Biomechanics, vol. 33, no. 12, pp. 1655–1662, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Gross and E. W. Abel, “A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur,” Journal of Biomechanics, vol. 34, no. 8, pp. 995–1003, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Boyle and I. Y. Kim, “Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization,” Journal of Biomechanics, vol. 44, no. 9, pp. 1722–1728, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Hirata, Y. Inaba, N. Kobayashi, H. Ike, H. Fujimaki, and T. Saito, “Comparison of mechanical stress and change in bone mineral density between two types of femoral implant using finite element analysis,” Journal of Arthroplasty, vol. 28, no. 10, pp. 1731–1735, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Bougherara, M. Bureau, M. Campbell, A. Vadean, and L. Yahia, “Design of a biomimetic polymer-composite hip prosthesis,” Journal of Biomedical Materials Research, Part A, vol. 82, no. 1, pp. 27–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Tavakkoli Avval, S. Samiezadeh, V. Klika, and H. Bougherara, “Investigating stress shielding spanned by biomimetic polymer-composite vs. metallic hip stem: a computational study using mechano-biochemical model,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 41, pp. 56–67, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Kurtz and J. N. Devine, “PEEK biomaterials in trauma, orthopedic, and spinal implants,” Biomaterials, vol. 28, no. 32, pp. 4845–4869, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. A. Gruen, G. M. McNeice, and H. C. Amstutz, “'Modes of failure' of cemented stem-type femoral components. A radiographic analysis of loosening,” Clinical Orthopaedics and Related Research, vol. 141, pp. 17–27, 1979. View at Google Scholar · View at Scopus
  13. L. Besra and M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD),” Progress in Materials Science, vol. 52, no. 1, pp. 1–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. P. B. Chang, B. J. Williams, K. S. B. Bhalla et al., “Design and analysis of robust total joint replacements: finite element model experiments with environmental variables,” Journal of Biomechanical Engineering, vol. 123, no. 3, pp. 239–246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. J. V. Abellán-Nebot, H. R. Siller, C. Vila, and C. A. Rodríguez, “An experimental study of process variables in turning operations of Ti-6Al-4V and Cr–Co spherical prostheses,” International Journal of Advanced Manufacturing Technology, vol. 63, no. 9–12, pp. 887–902, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. X. F. Xiao and R. F. Liu, “Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings,” Materials Letters, vol. 60, no. 21-22, pp. 2627–2632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Ebrahimi, M. Rabinovich, V. Vuleta et al., “Biomechanical properties of an intact, injured, repaired, and healed femur: an experimental and computational study,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 16, no. 1, pp. 121–135, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. W. X. Niu, L. J. Wang, T. N. Feng, C. H. Jiang, and Y. B. Fan, “Effects of bone Young's modulus on finite element analysis in the lateral ankle biomechanics,” Applied Bionics and Biomechanics, vol. 10, no. 4, pp. 189–195, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Baggi, M. Di Girolamo, G. Vairo, and G. Sannino, “Comparative evaluation of osseointegrated dental implants based on platform-switching concept: influence of diameter, length, thread shape, and in-bone positioning depth on stress-based performance,” Computational and Mathematical Methods in Medicine, vol. 2013, Article ID 250929, 15 pages, 2013. View at Publisher · View at Google Scholar
  20. M. Doblaré, J. M. García, and M. J. Gómez, “Modelling bone tissue fracture and healing: a review,” Engineering Fracture Mechanics, vol. 71, no. 13-14, pp. 1809–1840, 2004. View at Publisher · View at Google Scholar
  21. S. Shah, S. Y. R. Kim, A. Dubov, E. H. Schemitsch, H. Bougherara, and R. Zdero, “The biomechanics of plate fixation of periprosthetic femoral fractures near the tip of a total hip implant: cables, screws, or both?” Proceedings of the Institution of Mechanical Engineers. Part H: Journal of Engineering in Medicine, vol. 225, no. 9, pp. 845–856, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. E. T. Davis, M. Olsen, R. Zdero, J. P. Waddell, and E. H. Schemitsch, “Femoral neck fracture following hip resurfacing: the effect of alignment of the femoral component,” The Journal of Bone & Joint Surgery—British Volume, vol. 90, no. 11, pp. 1522–1527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Wilson, H. Frei, B. A. Masri, T. R. Oxland, and C. P. Duncan, “A biomechanical study comparing cortical onlay allograft struts and plates in the treatment of periprosthetic femoral fractures,” Clinical Biomechanics, vol. 20, no. 1, pp. 70–76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Corni, N. Neumann, S. Novak et al., “Electrophoretic deposition of PEEK-nano alumina composite coatings on stainless steel,” Surface and Coatings Technology, vol. 203, no. 10-11, pp. 1349–1359, 2009. View at Publisher · View at Google Scholar · View at Scopus