Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2016 (2016), Article ID 9343017, 12 pages
http://dx.doi.org/10.1155/2016/9343017
Research Article

Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

Department of Robotics and Mechatronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland

Received 13 November 2015; Revised 16 December 2015; Accepted 17 December 2015

Academic Editor: Po-Hsiang Tsui

Copyright © 2016 Z. Hashemiyan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, “Magnetic resonance elastography: a review,” Clinical Anatomy, vol. 23, no. 5, pp. 497–511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Kathiravan and J. Kanakaraj, “A review on potential issues and challenges in MR imaging,” The Scientific World Journal, vol. 2013, Article ID 783715, 10 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Yin, J. A. Talwalkar, K. J. Glaser et al., “Assessment of hepatic fibrosis with magnetic resonance elastography,” Clinical Gastroenterology and Hepatology, vol. 5, no. 10, pp. 1207.e2–1213.e2, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Huwart, C. Sempoux, N. Salameh et al., “Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase-to-platelet ratio index,” Radiology, vol. 245, no. 2, pp. 458–466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Chen, M. Yin, K. J. Glaser, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver disease: state of the art,” Applied Radiology, vol. 42, no. 4, pp. 5–12, 2013. View at Google Scholar · View at Scopus
  6. D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, “Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography,” Physics in Medicine and Biology, vol. 45, no. 6, pp. 1591–1610, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. A. L. Plewes, J. Mcknight, J. L. Kugel et al., “MR elastography of breast cancer: preliminary results,” American Journal of Roentgenology: Diagnostic Imaging and Related Sciences, vol. 178, no. 6, pp. 1411–1417, 2002. View at Google Scholar
  8. R. Sinkus, M. Tanter, S. Catheline et al., “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magnetic Resonance in Medicine, vol. 53, no. 2, pp. 372–387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Q. T. Afroze, Developing Magnetic Resonance Elastography (Mre) Breast Actuation System for Detecting Breast Cancer, University of Canterbury. Mechanical Engineering, 2012.
  10. R. M. Lerner and K. J. Parker, “Soneoelasticity images in ultrasonic tissue characterization and echographic imaging,” in Proceedings of the 7th European Communities Workshop, J. Thijssen, Ed., Nijmegen, The Netherlands, 1987.
  11. R. M. Lerner, k. J. Parker, J. Holen, R. Gramiak, and R. C. Waag, “Sono-elasticity: medical elasticity images derived from ultrasound signals in mechanically vibrated targets,” in Acoustical Imaging, vol. 16 of Acoustical Imaging, pp. 317–327, Springer, New York, NY, USA, 1988. View at Publisher · View at Google Scholar
  12. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrasonic Imaging, vol. 13, no. 2, pp. 111–134, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science, vol. 269, no. 5232, pp. 1854–1857, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Manduca, T. E. Oliphant, M. A. Dresner et al., “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Analysis, vol. 5, no. 4, pp. 237–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Bishop, A. Samani, J. Sciarretta, and D. B. Plewes, “Two-dimensional MR elastography with linear inversion reconstruction: methodology and noise analysis,” Physics in Medicine and Biology, vol. 45, no. 8, pp. 2081–2091, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. J. B. Weaver, E. E. W. Van Houten, M. I. Miga, F. E. Kennedy, and K. D. Paulsen, “Magnetic resonance elastography using 3D gradient echo measurements of steady-state motion,” Medical Physics, vol. 28, no. 8, pp. 1620–1628, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Physics in Medicine and Biology, vol. 45, no. 6, pp. 1649–1664, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Physics in Medicine and Biology, vol. 57, no. 3, pp. R35–R73, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. K. R. Raghavan and A. E. Yagle, “Forward and inverse problems in elasticity imaging of soft tissues,” IEEE Transactions on Nuclear Science, vol. 41, no. 4, pp. 1639–1645, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. K. J. Parker, S. R. Huang, R. A. Musulin, and R. M. Lerner, “Tissue-response tomechanical vibrations for sonoelasticity imaging,” Ultrasound in Medicine & Biology, vol. 16, no. 3, pp. 241–246, 1990. View at Google Scholar
  21. E. E. W. Van Houten, M. I. Miga, J. B. Weaver, F. E. Kennedy, and K. D. Paulsen, “Three-dimensional subzone-based reconstruction algorithm for MR elastography,” Magnetic Resonance in Medicine, vol. 45, no. 5, pp. 827–837, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Samani, J. Bishop, and D. B. Plewes, “A constrained modulus reconstruction technique for breast cancer assessment,” IEEE Transactions on Medical Imaging, vol. 20, no. 9, pp. 877–885, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. I. Miga, “A new approach to elastography using mutual information and finite elements,” Physics in Medicine and Biology, vol. 48, no. 4, pp. 467–480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. C. Brigham, W. Aquino, F. G. Mitri, J. F. Greenleaf, and M. Fatemi, “Inverse estimation of viscoelastic material properties for solids immersed in fluids using vibroacoustic techniques,” Journal of Applied Physics, vol. 101, no. 2, Article ID 023509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. R. Ghorayeb, E. Maione, and V. La Magna, “Modeling of ultrasonic wave propagation in teeth using PSpice: a comparison with finite element models,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 4, pp. 1124–1131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. N. N. Abbouda, G. L. Wojcikb, D. K. Vaughanb, J. Mould Jr., D. J. Powell, and L. Nikodym, “Finite element modeling for ultrasonic transducers,” in Medical Imaging: Ultrasonic Transducer Engineering, vol. 3341 of Proceedings of SPIE, San Diego, Calif, USA, February 1998. View at Publisher · View at Google Scholar
  27. R. Ramesh, C. D. Prasad, T. K. V. Kumar, L. A. Gavane, and R. M. R. Vishnubhatla, “Experimental and finite element modelling studies on single-layer and multi-layer 1–3 piezocomposite transducers,” Ultrasonics, vol. 44, no. 4, pp. 341–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Mao, P. Verma, and W. J. Staszewski, “Finite element modeling for fault detection in medical ultrasonic transducers,” in Proceedings of the 5th European Workshop on Structural Health Monitoring, Sorrento, Italy, June-July 2010.
  29. J. Kocbach, Finite Element Modelling of Ultrasonic Piezoelectric Transducers, Influence of geometry and Material Parameters on Vibration, Response Functions and Radiated Field, University of Bergen Department of Physics, 2000.
  30. S. Moten, Finite Element Modeling of an Ultrasonic Transducer, Literature Survey, Eindhoven University of Technology, Eindhoven, The Netherlands, 2011.
  31. G. G. Yaralioglu, B. Baryram, A. Nikoozadeh, B. T. Khuri-Yakub, and E. L. Ginzton, “Finite element modeling of capacitive micromachined ultrasonic transducers,” in Proceedings of the Medical Imaging: Ultrasonic Imaging and Signal Processing, vol. 5750 of Proceedings of SPIE, San Diego, Calif, USA, February 2005. View at Publisher · View at Google Scholar
  32. T. P. Harrigan and E. E. Konofagou, “Estimation of material elastic moduli in elastography: a local method, and an investigation of Poisson's ratio sensitivity,” Journal of Biomechanics, vol. 37, no. 8, pp. 1215–1221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. Q. Chen, S. I. Ringleb, T. Hulshizer, and K.-N. An, “Identification of the testing parameters in high frequency dynamic shear measurement on agarose gels,” Journal of Biomechanics, vol. 38, no. 4, pp. 959–963, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Yoshikawa and G. Nakamura, “Model independent MRE data analysis,” Computational and Mathematical Methods in Medicine, vol. 2013, Article ID 912920, 11 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  35. S. I. Ringleb, Q. Chen, D. S. Lake, A. Manduca, R. L. Ehman, and K.-N. An, “Quantitative shear wave magnetic resonance elastography: comparison to a dynamic shear material test,” Magnetic Resonance in Medicine, vol. 53, no. 5, pp. 1197–1201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Chen, S. I. Ringleb, A. Manduca, R. L. Ehman, and K.-N. An, “A finite element model for analyzing shear wave propagation observed in magnetic resonance elastography,” Journal of Biomechanics, vol. 38, no. 11, pp. 2198–2203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. Q. Chen, S. I. Ringleb, A. Manduca, R. L. Ehman, and K.-N. An, “Differential effects of pre-tension on shear wave propagation in elastic media with different boundary conditions as measured by magnetic resonance elastography and finite element modeling,” Journal of Biomechanics, vol. 39, no. 8, pp. 1428–1434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. H. A. Naeeni and M. Haghpanahi, “Numerical study of shear wavelength observed in MRE experiments with FEM,” in World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany, vol. 25/4 of IFMBE Proceedings, pp. 700–703, Springer, Berlin, Germany, 2010. View at Publisher · View at Google Scholar
  39. H. A. Naeeni and M. Haghpanahi, “FE modeling of living human brain using multifrequency magnetic resonance elastograph,” Applied Mechanics and Materials, vol. 66–68, pp. 384–389, 2011. View at Publisher · View at Google Scholar
  40. Z. Hashemiyan, P. Packo, W. J. Staszewski, and T. Uhl, “Shear wave propagation modeling in magnetic resonance elastography using the local interaction simulation approach,” in Proceedings of the 11th World Congress on Computational Mechanics, 5th European Conference on Computational Mechanics and 6th European Conference on Computational Fluid Dynamics, Barcelona, Spain, 2014.
  41. J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, UK, 1999.
  42. P. P. Delsanto, R. S. Schechter, and R. B. Mignogna, “Connection machine simulation of ultrasonic wave propagation in materials III: the three-dimensional case,” Wave Motion, vol. 26, no. 4, pp. 329–339, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Paćko, T. Bielak, A. B. Spencer, W. J. Staszewski, T. Uhl, and K. Worden, “Lamb wave propagation modelling and simulation using parallel processing architecture and graphical cards,” Smart Materials and Structures, vol. 21, no. 7, Article ID 075001, pp. 1–13, 2012. View at Publisher · View at Google Scholar
  44. P. P. Delsanto, T. Whitcombe, H. H. Chaskelis, and R. B. Mignogna, “Connection machine simulation of ultrasonic wave propagation in materials. I: the one-dimensional case,” Wave Motion, vol. 16, no. 1, pp. 65–80, 1992. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  45. P. P. Delsanto, R. S. Schechter, H. H. Chaskelis, R. B. Mignogna, and R. Kline, “Connection machine simulation of ultrasonic wave propagation in materials. II: the two-dimensional case,” Wave Motion, vol. 20, no. 4, pp. 295–314, 1994. View at Publisher · View at Google Scholar · View at Scopus
  46. B. C. Lee and W. J. Staszewski, “Modelling of Lamb waves for damage detection in metallic structures. Part I. Wave propagation,” Smart Materials and Structures, vol. 12, no. 5, pp. 804–814, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. Z. Hashemiyan, M. Boeff, P. Packo et al., “Fault detection in medical ultrasonic transducers—comparison between finite element modeling and local interaction simulation approach,” Key Engineering Materials, vol. 588, pp. 157–165, 2012. View at Google Scholar
  48. P. Packo, T. Uhl, and W. J. Staszewski, “Generalized semi-analytical finite difference method for dispersion curves calculation and numerical dispersion analysis for Lamb waves,” The Journal of the Acoustical Society of America, vol. 136, no. 3, pp. 993–1002, 2014. View at Publisher · View at Google Scholar
  49. P. Packo, T. Bielak, A. B. Spencer et al., “Numerical simulations of elastic wave propagation using graphical processing units—comparative study of high-performance computing capabilities,” Computer Methods in Applied Mechanics and Engineering, vol. 290, pp. 98–126, 2015. View at Publisher · View at Google Scholar · View at MathSciNet
  50. J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2nd edition, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  51. D. Iordache, P. P. Delsanto, and M. Scalerandi, “Pulse distortions in the FD simulation of elastic wave propagation,” Mathematical and Computer Modelling, vol. 25, no. 6, pp. 31–43, 1997. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus