Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2016, Article ID 9460375, 8 pages
http://dx.doi.org/10.1155/2016/9460375
Research Article

Comparison of Support-Vector Machine and Sparse Representation Using a Modified Rule-Based Method for Automated Myocardial Ischemia Detection

1Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan
2Institute of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
3Graduate Institute of Communication Engineering, National Taiwan University, Taipei 10617, Taiwan

Received 10 October 2015; Accepted 3 January 2016

Academic Editor: Ezequiel López-Rubio

Copyright © 2016 Yi-Li Tseng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Papaloukas, D. I. Fotiadis, A. Likas, and L. K. Michalis, “Automated methods for ischemia detection in long-duration ECGs,” Cardiovascular Reviews and Reports, vol. 24, no. 6, pp. 313–319, 2003. View at Google Scholar
  2. J. S. Alpert, K. Thygesen, E. Antman, and J. P. Bassand, “Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction,” Journal of the American College of Cardiology, vol. 36, no. 3, pp. 959–969, 2000. View at Google Scholar
  3. A. K. Manocha and M. Singh, “An overview of ischemia detection techniques,” International Journal of Scientific & Engineering Research, vol. 2, no. 11, pp. 1–6, 2011. View at Google Scholar
  4. F.-S. Jaw, Y.-L. Tseng, and J.-K. Jang, “Modular design of a long-term portable recorder for physiological signals,” Measurement, vol. 43, no. 10, pp. 1363–1368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Y.-L. Tseng, Y.-Z. Shi, and F.-S. Jaw, “Portable, real-time, 12-lead ECG monitoring system,” Instrumentation Science & Technology, vol. 38, no. 4, pp. 305–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Á. Alesanco and J. García, “Clinical assessment of wireless ECG transmission in real-time cardiac telemonitoring,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 5, pp. 1144–1152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. C. Chan, ECG in Emergency Medicine and Acute Care, Elsevier Mosby, Philadelphia, Pa, USA, 2005.
  8. C. Papaloukas, D. I. Fotiadis, A. P. Liavas, A. Likas, and L. K. Michalis, “A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms,” Medical & Biological Engineering & Computing, vol. 39, no. 1, pp. 105–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Papaloukas, D. I. Fotiadis, A. Likas, C. S. Stroumbis, and L. K. Michalis, “Use of a novel rule-based expert system in the detection of changes in the ST segment and the T wave in long duration ECGs,” Journal of Electrocardiology, vol. 35, no. 1, pp. 27–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Mincholé, F. Jager, and P. Laguna, “Discrimination between ischemic and artifactual ST segment events in Holter recordings,” Biomedical Signal Processing and Control, vol. 5, no. 1, pp. 21–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. P. Exarchos, C. Papaloukas, D. I. Fotiadis, and L. K. Michalis, “An association rule mining-based methodology for automated detection of ischemic ECG beats,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 8, pp. 1531–1540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. García, L. Sörnmo, S. Olmos, and P. Laguna, “Automatic detection of ST-T complex changes on the ECG using filtered RMS difference series: application to ambulatory ischemia monitoring,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 9, pp. 1195–1201, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Stamkopoulos, K. Diamantaras, N. Maglaveras, and M. Strintzis, “ECG analysis using nonlinear PCA neural networks for ischemia detection,” IEEE Transactions on Signal Processing, vol. 46, no. 11, pp. 3058–3067, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Bortolan and I. I. Christov, “Principal component analysis for detection and assessment of T-wave alternans,” in Proceedings of the Computers in Cardiology, pp. 521–524, IEEE, Bologna, Italy, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. M. Schindler, R. L. Lux, V. Shusterman, and B. J. Drew, “Karhunen-Loève representation distinguishes ST-T wave morphology differences in emergency department chest pain patients with non-ST-elevation myocardial infarction versus nonacute coronary syndrome,” Journal of Electrocardiology, vol. 40, no. 6, supplement 1, pp. S145–S149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. F. A. Afsar, M. Arif, and J. Yang, “Detection of ST segment deviation episodes in ECG using KLT with an ensemble neural classifier,” Physiological Measurement, vol. 29, no. 7, pp. 747–760, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Vila, J. Presedo, M. Delgado, S. Barro, R. Ruiz, and F. Palacios, “SUTIL: intelligent ischemia monitoring system,” International Journal of Medical Informatics, vol. 47, no. 3, pp. 193–214, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. T. P. Exarchos, M. G. Tsipouras, C. P. Exarchos, C. Papaloukas, D. I. Fotiadis, and L. K. Michalis, “A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree,” Artificial Intelligence in Medicine, vol. 40, no. 3, pp. 187–200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Papaloukas, D. I. Fotiadis, A. Likas, and L. K. Michalis, “An ischemia detection method based on artificial neural networks,” Artificial Intelligence in Medicine, vol. 24, no. 2, pp. 167–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. H. N. Murthy and D. Meenakshi, “ANN, SVM and KNN classifiers for prognosis of cardiac ischemia—a comparison,” Bonfring International Journal of Research in Communication Engineering, vol. 5, no. 2, pp. 7–11, 2015. View at Publisher · View at Google Scholar
  21. Y. Goletsis, C. Papaloukas, D. I. Fotiadis, A. Likas, and L. K. Michalis, “Automated ischemic beat classification using genetic algorithms and multicriteria decision analysis,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 10, pp. 1717–1725, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. W. Zimmerman and R. J. Povinelli, “On improving the classification of myocardial ischemia using Holter ECG data,” in Proceedings of the IEEE Computers in Cardiology Conference, pp. 377–380, Chicago, Ill, USA, September 2004. View at Publisher · View at Google Scholar
  23. M. Mohebbi and H. A. Moghadam, “An algorithm for automated detection of ischemic ECG beats using support vector machines,” in Proceedings of the IEEE 15th Signal Processing and Communications Applications (SIU '07), pp. 1–4, IEEE, Eskişehir, Turkey, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. N. A. Bhaskar, “Performance analysis of support vector machine and neural networks in detection of myocardial infarction,” Procedia Computer Science, vol. 46, pp. 20–30, 2015. View at Publisher · View at Google Scholar
  25. J. Park, W. Pedrycz, and M. Jeon, “Ischemia episode detection in ECG using kernel density estimation, support vector machine and feature selection,” BioMedical Engineering Online, vol. 11, article 30, pp. 1–22, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. J. I. Peláez, J. M. Doña, J. F. Fornari, and G. Serra, “Ischemia classification via ECG using MLP neural networks,” International Journal of Computational Intelligence Systems, vol. 7, no. 2, pp. 344–352, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Kim, H. S. Shin, K. Shin, and M. Lee, “Robust algorithm for arrhythmia classification in ECG using extreme learning machine,” BioMedical Engineering OnLine, vol. 8, no. 1, p. 31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Yu, H. Lu, T. Ouyang, H. Liu, and B.-L. Lu, “Vigilance detection based on sparse representation of EEG,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '10), pp. 2439–2442, Buenos Aires, Argentina, September 2010. View at Publisher · View at Google Scholar
  29. Y. Li, A. Cichocki, and S.-I. Amari, “Analysis of sparse representation and blind source separation,” Neural Computation, vol. 16, no. 6, pp. 1193–1234, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  30. A. Julazadeh, J. Alirezaie, and P. Babyn, “A novel automated approach for segmenting lateral ventricle in MR images of the brain using sparse representation classification and dictionary learning,” in Proceedings of the 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA '12), pp. 888–893, IEEE, Montreal, Canada, July 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Fan, M. Ni, Q. Zhu, and E. Liu, “Weighted sparse representation for face recognition,” Neurocomputing, vol. 151, no. 1, pp. 304–309, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Ren, Y. Wu, and Y. Ge, “A co-training algorithm for EEG classification with biomimetic pattern recognition and sparse representation,” Neurocomputing, vol. 137, pp. 212–222, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Shin, S. Lee, M. Ahn, H. Cho, S. C. Jun, and H. Lee, “Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification,” Biomedical Signal Processing and Control, vol. 21, pp. 8–18, 2015. View at Publisher · View at Google Scholar
  34. Y. Li, Z. L. Yu, N. Bi, Y. Xu, Z. Gu, and S.-I. Amari, “Sparse representation for brain signal processing: a tutorial on methods and applications,” IEEE Signal Processing Magazine, vol. 31, no. 3, pp. 96–106, 2014. View at Publisher · View at Google Scholar
  35. Y. Guo, Y. Wang, D. Kong, and X. Shu, “Automatic classification of intracardiac tumor and thrombi in echocardiography based on sparse representation,” IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 2, pp. 601–611, 2015. View at Publisher · View at Google Scholar
  36. W. C. Tan, H. M. Yeap, K. J. Chee, and D. A. Ramli, “Towards real time implementation of Sparse Representation Classifier (SRC) based heartbeat biometric system,” in Computational Problems in Engineering, vol. 307 of Lecture Notes in Electrical Engineering, pp. 189–202, Springer, Berlin, Germany, 2014. View at Publisher · View at Google Scholar
  37. S. M. Mathews, L. F. Polania, and K. E. Barner, “Leveraging a discriminative dictionary learning algorithm for single-lead ECG classification,” in Proceedings of the 41st Annual Northeast Biomedical Engineering Conference (NEBEC '15), pp. 1–2, IEEE, Troy, NY, USA, April 2015. View at Publisher · View at Google Scholar
  38. H. Baali and M. Mesbah, “Ventricular ectopic beats classification using sparse representation and Gini Index,” in Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '15), pp. 5821–5824, IEEE, Milan, Italy, August 2015. View at Publisher · View at Google Scholar
  39. H. F. Huang, G. S. Hu, and L. Zhu, “Sparse representation-based heartbeat classification using independent component analysis,” Journal of Medical Systems, vol. 36, no. 3, pp. 1235–1247, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. M. S. Manikandan, B. Ramkumar, P. S. Deshpande, and T. Choudhary, “Robust detection of premature ventricular contractions using sparse signal decomposition and temporal features,” Healthcare Technology Letters, vol. 2, no. 6, pp. 141–148, 2015. View at Publisher · View at Google Scholar
  41. N. Maglaveras, T. Stamkopoulos, C. Pappas, and M. G. Strintzis, “An adaptive backpropagation neural network for real-time ischemia episodes detection: development and performance analysis using the European ST-T database,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 7, pp. 805–813, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Badilini, A. J. Moss, and E. L. Titlebaum, “Cubic spline baseline estimation in ambulatory ECG recordings for the measurement of ST segment displacements,” in Proceedings of the 13th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 584–585, November 1991. View at Scopus
  43. I. K. Daskalov, I. A. Dotsinsky, and I. I. Christov, “Developments in ECG acquisition, preprocessing, parameter measurement, and recording,” IEEE Engineering in Medicine and Biology Magazine, vol. 17, no. 2, pp. 50–58, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Benitez, P. A. Gaydecki, A. Zaidi, and A. P. Fitzpatrick, “The use of the Hilbert transform in ECG signal analysis,” Computers in Biology and Medicine, vol. 31, no. 5, pp. 399–406, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. N. M. Arzeno, Z.-D. Deng, and C.-S. Poon, “Analysis of first-derivative based QRS detection algorithms,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 2, pp. 478–484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Libby and E. Braunwald, Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, Saunders/Elsevier, Philadelphia, Pa, USA, 2008.
  47. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, article 27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. D. L. Donoho, “For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution,” Communications on Pure and Applied Mathematics, vol. 59, no. 6, pp. 797–829, 2006. View at Google Scholar
  50. M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control, pp. 95–110, Springer, London, UK, 2008. View at Publisher · View at Google Scholar
  51. A. L. Goldberger, L. A. N. Amaral, L. Glass et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI '95), vol. 2, pp. 1137–1143, 1995.
  53. A. Amann, R. Tratnig, and K. Unterkofler, “Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators,” BioMedical Engineering Online, vol. 4, article 60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. J. A. Swets and R. M. Pickett, Evaluation of Diagnostic Systems: Methods from Signal Detection Theory, Academic Press, New York, NY, USA, 1982.
  55. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. R. Homaeinezhad, S. A. Atyabi, E. Tavakkoli, H. N. Toosi, A. Ghaffari, and R. Ebrahimpour, “ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features,” Expert Systems with Applications, vol. 39, no. 2, pp. 2047–2058, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Kher, T. Pawar, V. Thakar, and H. Shah, “Physical activities recognition from ambulatory ECG signals using neuro-fuzzy classifiers and support vector machines,” Journal of Medical Engineering & Technology, vol. 39, no. 2, pp. 138–152, 2015. View at Publisher · View at Google Scholar