Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2017 (2017), Article ID 3020326, 9 pages
https://doi.org/10.1155/2017/3020326
Research Article

Inference of Biochemical S-Systems via Mixed-Variable Multiobjective Evolutionary Optimization

1School of Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
2School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, China

Correspondence should be addressed to Yu Chen

Received 30 November 2016; Accepted 27 April 2017; Published 21 May 2017

Academic Editor: Giancarlo Ferrigno

Copyright © 2017 Yu Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. I. Davidich and S. Bornholdt, “Boolean network model predicts cell cycle sequence of fission yeast,” PLoS ONE, vol. 3, no. 2, Article ID e1672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Trairatphisan, A. Mizera, J. Pang, A. A. Tantar, and J. Schneider, “Recent development and biomedical applications of probabilistic Boolean networks,” Cell Communication and Signaling, vol. 11, article 46, 2013. View at Google Scholar
  3. N. Friedman, M. Linial, I. Nachman, and D. Pe'er, “Using Bayesian networks to analyze expression data,” Journal of Computational Biology, vol. 7, no. 3-4, pp. 601–620, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. L. E. Chai, M. S. Mohamad, S. Deris, C. K. Chong, Y. W. Choon, and S. Omatu, “Current development and review of dynamic bayesian network-based methods for inferring gene regulatory networks from gene expression data,” Current Bioinformatics, vol. 9, no. 5, pp. 531–539, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Michailidis and F. d'Alch\'e-Buc, “Autoregressive models for gene regulatory network inference: sparsity, stability and causality issues,” Mathematical Biosciences, vol. 246, no. 2, pp. 326–334, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. Y. X. R. Wang and H. Huang, “Review on statistical methods for gene network reconstruction using expression data,” Journal of Theoretical Biology, vol. 362, pp. 53–61, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. L. E. Chai, S. K. Loh, S. T. Low, M. S. Mohamad, S. Deris, and Z. Zakaria, “A review on the computational approaches for gene regulatory network construction,” Computers in Biology and Medicine, vol. 48, no. 1, pp. 55–65, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Li, S. Jin, L. Lei, Z. Pan, and X. Zou, “Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis,” Scientific Reports, vol. 5, article e9283, 2015. View at Publisher · View at Google Scholar
  9. X. Xiao, W. Zhang, and X. Zou, “A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks,” PLoS ONE, vol. 10, no. 3, Article ID e0119294, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. E. O. Voit and J. Almeida, “Decoupling dynamical systems for pathway identification from metabolic profiles,” Bioinformatics, vol. 20, no. 11, pp. 1670–1681, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. R. Chowdhury, M. Chetty, and N. X. Vinh, “Inferring large scale genetic networks with S-system model,” in Proceedings of The Annual Conference on Genetic And Evolutionary Computation (GECCO ’13), pp. 271–278, 2013.
  12. A. Komori, Y. Maki, I. Ono, and M. Okamoto, “How to infer the interactive large scale regulatory network in 'omic' studies,” in Proceedings of 4th International Conference on Computational Systems-Biology and Bioinformatics, (CSBio '13), pp. 44–52, November 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. R. R. Khan and M. Chetty, “Towards large scale genetic network modeling,” in Proceedings of the IEEE Computational Intelligence in Bioinformatics & Computational Biology (CIBCB '15), pp. 1–8, 2015.
  14. D. Tominaga, N. Koga, and M. Okamoto, “Efficient numerical optimization algorithm based on genetic algorithm for inverse problem,” in Proceedings of The Annual Conference on Genetic And Evolutionary Computation, vol. 251, pp. 251–258, 2000.
  15. L. Palafox, N. Noman, and H. Iba, “Reverse engineering of gene regulatory networks using dissipative particle swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 4, pp. 577–587, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. W.-P. Lee and Y.-T. Hsiao, “Inferring gene regulatory networks using a hybrid GA-PSO approach with numerical constraints and network decomposition,” Information Sciences, vol. 188, pp. 80–99, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Li, L. Kang, and X.-M. Zhao, “A survey on evolutionary algorithm based hybrid intelligence in bioinformatics,” BioMed Research International, vol. 2014, Article ID 362738, 8 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. K.-Y. Tsai and F.-S. Wang, “Evolutionary optimization with data collocation for reverse engineering of biological networks,” Bioinformatics, vol. 21, no. 7, pp. 1180–1188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. L.-Z. Liu, F.-X. Wu, and W. J. Zhang, “Inference of biological S-system using the separable estimation method and the genetic algorithm,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 4, pp. 955–965, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. P.-K. Liu and F.-S. Wang, “Inference of biochemical network models in S-system using multiobjective optimization approach,” Bioinformatics, vol. 24, no. 8, pp. 1085–1092, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Koduru, Z. Dong, S. Das, S. M. Welch, J. L. Roe, and E. Charbit, “A multiobjective evolutionary-simplex hybrid approach for the optimization of differential equation models of gene networks,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 5, pp. 572–590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Cai, Z. Hu, S. Das, and S. M. Welch, “A hierarchical Pareto dominance based multi-objective approach for the optimization of gene regulatory network models,” in Proceedings of 2012 IEEE Congress on Evolutionary Computation, (CEC '12), June 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Spieth, F. Streichert, N. Speer, and A. Zell, “Multi-objective model optimization for inferring gene regulatory networks,” in Proceedings of The International Conference on Evolutionary Multi-Criterion Optimization, vol. 3410, pp. 607–620, 2005.
  24. Y. Chen, W. Xie, and X. Zou, “A binary differential evolution algorithm learning from explored solutions,” Neurocomputing, vol. 149, pp. 1038–1047, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Storn and K. Price, “Differential evolution---a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. View at Publisher · View at Google Scholar · View at MathSciNet
  26. L. Li, X. Yao, R. Stolkin, M. Gong, and S. He, “An evolutionary multiobjective approach to sparse reconstruction,” IEEE Transactions on Evolutionary Computation, vol. 18, no. 6, pp. 827–845, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Branke, K. Deb, H. Dierolf, and M. Osswald, “Finding knees in mult-objective optimization,” in Proceedings of the 8th Conference Parallel Problem Solving from Nature-(PPSN '04), vol. 3242 of Lecture Notes in Computer Science, pp. 722–731, 2004.
  28. M. Kabir, N. Noman, and H. Iba, “Reverse engineering gene regulatory network from microarray data using linear time-variant model,” BMC Bioinformatics, vol. 11, article S56, supplement 1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Kimura, K. Ide, A. Kashihara et al., “Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm,” Bioinformatics, vol. 21, no. 7, pp. 1154–1163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Kikuchi, D. Tominaga, M. Arita, M. Takahashi, and M. Tomita, “Dynamic modeling of genetic networks using genetic algorithm and S-system,” Bioinformatics, vol. 19, no. 5, pp. 643–650, 2003. View at Publisher · View at Google Scholar
  31. N. Noman and H. Iba, “Reverse engineering genetic networks using evolutionary computation,” Genome Informatics, vol. 16, no. 2, pp. 205–214, 2005. View at Google Scholar
  32. N. Noman and H. Iba, “On the reconstruction of gene regulatory networks from noisy expression profiles,” in Proceedings of The IEEE International Conference on Evolutionary Computation, no. 1, pp. 2543–2550, 2006.
  33. J. Vera, P. De Atauri, M. Cascante, and N. V. Torres, “Multicriteria optimization of biochemical systems by linear programming: application to production of ethanol by Saccharomyces cerevisiae,” Biotechnology and Bioengineering, vol. 83, no. 3, pp. 335–343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. D.-Y. Cho, K.-H. Cho, and B.-T. Zhang, “Identification of biochemical networks by S-tree based genetic programming,” Bioinformatics, vol. 22, no. 13, pp. 1631–1640, 2006. View at Publisher · View at Google Scholar · View at Scopus