Computational and Mathematical Methods in Medicine

Computational and Mathematical Methods in Medicine / 2017 / Article

Research Article | Open Access

Volume 2017 |Article ID 9270450 | https://doi.org/10.1155/2017/9270450

Ertugrul Colak, Hulya Ozen, Busra Emir, Setenay Oner, "Pairwise Multiple Comparison Adjustment Procedure for Survival Functions with Right-Censored Data", Computational and Mathematical Methods in Medicine, vol. 2017, Article ID 9270450, 8 pages, 2017. https://doi.org/10.1155/2017/9270450

Pairwise Multiple Comparison Adjustment Procedure for Survival Functions with Right-Censored Data

Academic Editor: Chen Yanover
Received17 May 2017
Revised31 Aug 2017
Accepted14 Sep 2017
Published12 Oct 2017

Abstract

The aim of this study is to propose a new pairwise multiple comparison adjustment procedure based on Genz’s numerical computation of probabilities from a multivariate normal distribution. This method is applied to the results of two-sample log-rank and weighted log-rank statistics where the survival data contained right-censored observations. We conducted Monte Carlo simulation studies not only to evaluate the familywise error rate and power of the proposed procedure but also to compare the procedure with conventional methods. The proposed method is also applied to the data set consisting of 815 patients on a liver transplant waiting list from 1990 to 1999. It was found that the proposed method can control the type I error rate, and it yielded similar power as Tukey’s and high power with respect to the other adjustment procedures. In addition to having a straightforward formula, it is easy to implement.

1. Introduction

Survival analysis is based on making inferences from the time-to-event data. It provides many statistical procedures for studying the data, including the time from a correctly identified origin until the occurrence of a certain event [1]. One of the main interests in survival analysis is evaluating the equality of survival functions for different groups. Many tests such as log-rank and weighed log-rank have been proposed [28]. Although these tests made important contributions to survival analysis, they can only provide overall or two-sample comparison results. Researchers will fail if they use these tests to compare one with another in a multigroup study design because the probability of making at least one type I error will be increased above the critical level. To prevent this mistake, pairwise multiple comparison procedures are needed. In case of the inequality of more than two groups, it is necessary to correctly decide which groups are different from the others. The appropriate way to control the type I error is to consider the familywise error (FWE) rate, which is the probability of making at least one type I error when making all pairwise comparisons [9].

Adjustment methods such as Bonferroni, Holm, and Sidak methods are commonly used in the literature. However, in survival analysis this topic has only recently been studied. Adjustment methods are applied to the results of two-sample log-rank and weighted log-rank tests. Bonferroni is the most preferred method among the others. In a two-sided test, Bonferroni assumes the significance level as , where is the number of pairwise comparisons in the study, but it fails when controlling the familywise error rate. In spite of its simplicity, it has been determined to be a conservative method in survival analysis [9, 10]. Logan et al. proposed two different adjustment methods that consider the correlation among the pairwise tests [9]. One of the methods was derived from multivariate normal distribution, while the other was obtained from a simulated martingales approach. Koziol and Reid used the Sidak adjustment method to calculate the pairwise comparisons results of weighted log-rank tests. Although it generates more consistent results than Bonferroni’s, it was also found to be conservative [11]. Not only were pairwise multiple comparisons proposed, but comparisons against a single control group were also proposed for survival functions with right-censored data in the statistical literature. Chakraborti and Desu developed linear rank tests, and Chen proposed a generalized Steel’s test and an alternative method to the generalization of Steel’s test [1215].

The aim of this study is to propose a new pairwise multiple comparison adjustment procedure based on Genz’s numerical computation of probabilities from a multivariate normal distribution [16, 17]. This method is applied to the results of two-sample log-rank and weighted log-rank statistics where the survival data contained right-censored observations. In Section 2, some notations are given, and the construction of the simulation study is detailed. In the simulation studies SAS PROC LIFETEST and R package with mvtnorm library were used. Moreover, all adjustment methods are applied to a real life-time data set and they are compared with each other. The results and discussion about other studies are evaluated in Section 3. Finally, conclusions are mentioned in Section 4.

2. Materials and Methods

2.1. Notation and Background

Let be the survival function of the th group for, where is the number of groups. The null and alternative hypotheses for the survival functions arewhere is the largest observed time.

Let , for , indicates that an independent sample for right-censored survival data where is right-censored time, is the indicator variable for censoring ( if is censored; if is an event time), is the group indicator of , and is a weight function. Let be distinct event times in the sample. At time , for the th group, let and denote the number of individuals at risk and the number of events, respectively. Let and denote the number individuals at risk and the number of events, respectively. The weighted number of individuals at risk in the th group is , while the weighted number of events in the th group is . Let and indicate the weighted number of individuals at risk and the weighted number of events, respectively.

For testing the null hypothesis, the test statistics have the form of a -vector , where Variance of and covariance for and are as follows, respectively:Because the sum of is equal to 0, they are linearly dependent. Accordingly, the general test statistic is constructed by selecting any of ’s. The test statistic, , follows a Chi-square distribution with degrees of freedom, where is the variance-covariance matrix.

Let be the number of all pairwise comparisons where. The two-sided test statistic, , compares the groups and and follows a standard normal distribution.The unadjusted value is. The multiple comparison procedures that are used to adjust the values in this study are shown below:   Bonferroni: .  Scheffé: .  Sidak: .  Studentized Maximum Modulus: .  Tukey: ,where and are standard normal and cumulative standard normal functions, respectively.

2.2. Proposed Adjustment Procedure

has a multivariate normal distribution with a mean of zero and a variance-covariance matrix . Under the null hypothesis, the elements of follow a rule which is , , and , where [9, 14, 15].

The function of isFor the integration shown above, we used “mvtnorm” library, released February 2, 2016, for numerical computation in R program. There are three algorithms available for evaluating normal probabilities: The default is the randomized Quasi-Monte-Carlo procedure by Genz (1992, 1993). We used this approach because it is easy to use and calculate with R program.

The proposed multiple adjustment procedures for the pairwise comparison of the th and th groups are obtained using and shown below:where and .

Additionally, the critical value for the pairwise comparison can be evaluated with

2.3. Simulation Study

We performed Monte Carlo simulation studies to examine the proposed and conventional adjustment procedures. The FWE rate and power of the adjustment procedures were obtained through the simulation results. In this study, the number of groups was determined as ; . The sample sizes were considered equal for each group as , 150, and 250 to estimate the FWE rate, while it was just 250 in the power study. The right-censored survival times were derived from the exponential and lognormal distribution . The censoring rate was considered to be 30%. Therefore, the censoring variable was generated from a Bernoulli distribution . Note that the censoring rate was fixed for each group in the FWE rate and power study. To obtain the adjusted values, Bonferroni, Scheffé, Sidak, SMM, Tukey, and the proposed adjustment procedure were applied to the pairwise comparison results of log-rank and weighted log-rank tests. For each scenario 1000 data sets were simulated independently.

To compare the FWE rates of the adjustment procedures, the survival times for each group were generated from the standard exponential distribution with and the lognormal distribution with a mean of and scale parameter. The estimated FWE rates of the adjustment procedures were evaluated with respect to the critical value In the power study, we used exponential distributions with various parameters and lognormal distributions with but different values of . For power calculation, we calculated the probability of making a correct decision only for unequal pairs. Note that the exponential distribution provides a proportional hazards model while the lognormal distribution corresponds to location shifts in log survival times. The lognormal distributions with various means were used because they have different hazards at early times [15].

2.4. Application Data

The data set was obtained from the free data sets used in the R package, “survival” [18, 19]. It consisted of 815 patients on a liver transplant waiting list from 1990 to 1999 with six variables: age at the addition to the waiting list, sex, blood type, year in which a patient entered the waiting list, and time from the entry to end point. The final disposition of the patients was categorized as received a transplant, died while waiting, withdrew from the list, or censored. Blood type is a crucial factor which affects the waiting time for transplantation. Although the liver donation from subjects with blood type O can be used by patients with all blood types, a patient with blood type O can only receive donation from the subjects with blood type O. Thus, patients with O blood type on the waiting list have a disadvantage. These data is of historical interest and provides a useful example of competing risks, but it has little relevance to current practice. We used these data as an example to demonstrate the comparison of the proposed and conventional adjustment techniques on a real data set. We considered that the event is receiving a transplant, while the other categories of final disposition are censored.

3. Results and Discussion

Table 1 shows the simulation results for the estimated FWE rates of the proposed and conventional adjustment procedures for exponential survival distribution with different sample sizes. Under the null hypothesis, FWE rates are expected to be 0.05. As the sample size increases, estimates get closer to the targeted value in all adjustment procedures. It is obvious that the Scheffé method is the most inefficient among the others. The proposed adjustment procedure and Tukey’s present similar results. It can be seen that both adjustment procedures can control the type I error even for small samples. Their performance is followed by Sidak, SMM, and Bonferroni procedures. In Table 2, the estimates of the FWE rates for the survival times from the lognormal distribution with the parameters and are given. Unlike the previous simulation results, not all procedures give estimates that are close to the targeted value. The proposed adjustment procedure and Tukey’s provide the most efficient results. The decrease in the performance of the adjustment procedures could depend on the type of distributions. Because an exponential distribution provides a more appropriate proportional hazard model than a lognormal distribution, this affects the performance of the log-rank and the weighted log-rank tests. Therefore, the adjustment procedures tend to cause errors.


Sample sizeTestsProposed and conventional adjustment techniques
UnadjustedBonferroniSchefféSidakSMMTukeyProposed

50Fleming0.1940.0390.0310.0400.0400.0530.053
Log-rank0.1870.0400.0240.0400.0400.0460.046
ModPeto0.1960.0400.0310.0430.0430.0540.054
Peto0.1940.0390.0310.042 0.0420.0540.054
Tarone0.1930.0410.0270.0410.0410.0530.053
Wilcoxon0.2040.0430.0290.0440.0440.0520.052

150Fleming0.2060.0340.0220.0350.0350.0390.039
Log-rank0.1850.0360.0190.0370.0370.0440.044
ModPeto0.2040.0330.0230.0340.0340.0380.038
Peto0.2060.0340.0220.0340.0340.0380.038
Tarone0.1980.0350.0200.0350.0350.0450.045
Wilcoxon0.2110.0380.0230.0380.0380.0450.045

250Fleming0.2140.0450.0320.0460.0460.0570.057
Log-rank0.2090.0430.0300.0440.0440.0490.049
ModPeto0.2140.0450.0320.0460.0460.0570.057
Peto0.2140.0450.0320.0460.0460.0570.057
Tarone0.2100.0470.0330.0470.0470.0540.054
Wilcoxon0.2090.0440.0290.0450.0450.0560.056


Sample sizeTestsProposed and conventional adjustment techniques
UnadjustedBonferroniSchefféSidakSMMTukeyProposed

50Fleming0.1880.0350.0230.0350.0350.0410.041
Log-rank0.1990.0380.0210.0380.0380.0430.043
ModPeto0.1870.0360.0230.0360.0360.0410.041
Peto0.1890.0350.0230.0360.0360.0410.041
Tarone0.1820.0320.0220.0330.0330.0410.041
Wilcoxon0.1820.0380.0190.0380.0380.0470.047

150Fleming0.2020.0460.0250.0460.0460.0510.051
Log-rank0.2200.0430.0300.0430.0430.0500.050
ModPeto0.2000.0450.0250.0460.0460.0510.051
Peto0.2010.0450.0250.0460.0460.0510.051
Tarone0.2100.0410.0290.0430.0430.0510.051
Wilcoxon0.1960.0440.0230.0440.0440.0510.051

250Fleming0.1960.0400.0240.0410.0410.0490.049
Log-rank0.2010.0370.0230.0370.0370.0440.044
ModPeto0.1970.0400.0240.0400.0400.0490.049
Peto0.1960.0400.0240.0410.0410.0490.049
Tarone0.1950.0450.0230.0460.0460.0490.049
Wilcoxon0.2020.0320.0210.0340.0340.0420.042

Next, the simulation results are calculated for the power of the proposed and conventional adjustment procedures for the exponential survival distribution. Under a variety of hypothesis configurations denoted by , the estimated power results are given in Table 3. As the values of become different from each other, the power of all of the adjustment procedures decreases rapidly. The proposed adjustment procedure and Tukey’s provide similar results with the highest power. We also conducted additional simulations where the survival times were derived from a lognormal distribution. The estimates of power under alternative configurations of are given in Table 4. Inefficient power results are only seen when all of the values are different. Moreover, the performance of all of the adjustment procedures gives very similar results. In all the simulation results, it can be seen that there is no notable difference between the log-rank and weighted log-rank tests.


ParametersTestsProposed and conventional adjustment techniques
UnadjustedBonferroniSchefféSidakSMMTukeyProposed

(2.25, 1.50, 1.50, 1.50)Fleming0.7650.5940.5230.5970.5970.6180.618
Log-rank0.8580.7850.7260.7840.7840.8020.802
ModPeto0.7630.5930.5210.5930.5930.6180.618
Peto0.7640.5930.5220.5970.5970.6180.618
Tarone0.7890.6540.5950.6570.6570.6760.676
Wilcoxon0.7250.5060.4280.5070.5070.5350.535

(2.25, 2.25, 1.50, 1.50)Fleming0.7570.5140.4370.5160.5160.5410.541
Log-rank0.8230.6270.5550.6290.6290.6650.665
ModPeto0.7560.5120.4360.5160.5160.5390.539
Peto0.7570.5130.4360.5160.5160.5410.541
Tarone0.7890.5580.4900.5600.5600.5880.588
Wilcoxon0.7130.4420.3580.4470.4470.4680.468

(2.25, 1.75, 1.75, 1.25)Fleming0.2430.0320.0170.0330.0330.0450.045
Log-rank0.3680.0630.0340.0640.0640.0800.080
ModPeto0.2430.0320.0170.0330.0330.0440.044
Peto0.2430.0320.0170.0330.0330.0440.044
Tarone0.2900.0460.0240.0470.0470.0550.055
Wilcoxon0.1860.0260.0090.0260.0260.0310.031

(2.50, 2.00, 1.50, 1.00)Fleming0.1680.0100.0020.0100.0100.0140.014
Log-rank0.2690.0230.0060.0240.0240.0350.035
ModPeto0.1670.0090.0020.0100.0100.0130.013
Peto0.1670.0100.0020.0100.0100.0140.014
Tarone0.2040.0120.0060.0130.0130.0180.018
Wilcoxon0.1210.0050.0000.0050.0050.0050.005


ParametersTestsProposed and conventional adjustment techniques
UnadjustedBonferroniSchefféSidakSMMTukeyProposed

(0.5, 0, 0, 0)Fleming0.8710.9780.9850.9780.9780.9760.976
Log-rank0.9010.9950.9960.9950.9950.9910.991
ModPeto0.8710.9780.9850.9780.9780.9760.976
Peto0.8710.9780.9850.9780.9780.9760.976
Tarone0.8800.9790.9890.9780.9780.9730.973
Wilcoxon0.8690.9780.9850.9770.9770.9730.973

(0.5, 0.5, 0, 0)Fleming0.9220.9870.9920.9870.9870.9840.984
Log-rank0.9230.9880.9950.9880.9880.9850.985
ModPeto0.9230.9870.9920.9870.9870.9840.984
Peto0.9230.9870.9920.9870.9870.9840.984
Tarone0.9280.9870.9940.9870.9870.9860.986
Wilcoxon0.9310.9860.9920.9860.9860.9830.983

(0.3, 0, 0, −0.3)Fleming0.9620.9820.9800.9820.9820.9840.984
Log-rank0.9470.9400.9060.9400.9400.9490.949
ModPeto0.9620.9820.9800.9820.9820.9840.984
Peto0.9620.9820.9800.9820.9820.9840.984
Tarone0.9580.9790.9740.9790.9790.9800.980
Wilcoxon0.9620.9850.9790.9850.9850.9840.984

(0.5, 0.3, −0.3, −0.5)Fleming0.7160.3320.2450.3360.3360.3730.373
Log-rank0.5510.2600.1990.2620.2620.2930.293
ModPeto0.7160.3290.2440.3370.3370.3710.371
Peto0.7160.3320.2450.3370.3370.3710.371
Tarone0.7120.3450.2780.3470.3470.3950.395
Wilcoxon0.6980.2660.1910.2710.2710.3040.304

Descriptive statistics of the application data set are given in Table 5 and the survival functions of the groups are shown in Figure 1. The overall comparison of blood type groups is conducted with log-rank test. The result is found to be highly significant (, df = 3, and ). Thus, pairwise comparisons followed by multiple adjustment procedures were conducted, and the results are given in Table 6. All of the adjustment procedures had the same conclusions and present results that are similar to those that we observed in the simulation studies. The comparison results show that, with the exception of the pair of B and AB, all of the blood types are highly different from each other. The values obtained for each comparative test for the application data showed significant differences () between the survival times of the blood groups except for the comparison of AB and B groups (). The results can be seen in Kaplan-Meier curves represented in Figure 1. The survival curves show a proportional structure until the middle of the 0–500-day interval. Also, the survival curves of AB and B blood groups are closer to each other compared to the other groups.


Blood groupsLTXCensoredTotalPercent censoredMedian follow-up (days)95% confidence interval
LowerUpper

A269563250.17210095108
AB338410.1958452202
B78251030.243173116212
0256903460.260223193276
Total6361798150.219


Tests Blood groupsTest statisticsProposed and conventional adjustment techniques
UnadjustedBonferroniSchefféSidakSMMTukeyProposed

FlemingAAB5.106<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
AB5.236<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
A07.570<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
ABB1.6390.10120.60700.44240.47270.47270.35650.4297
AB07.039<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
B04.826<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001

Log-rankAAB4.543<0.0001<0.00010.0001<0.0001<0.0001<0.0001<0.0001
AB4.519<0.0001<0.00010.0001<0.0001<0.0001<0.0001<0.0001
A06.483<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
ABB1.2580.20841.00000.66340.75390.75390.58980.7716
AB05.924<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
B04.088<0.00010.00030.00080.00030.00030.0003<0.001

ModPetoAAB5.103<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
AB5.233<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
A07.570<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
ABB1.6380.10150.60890.44330.47380.47380.35730.4303
AB07.042<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
B04.829<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001

PetoAAB5.102<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
AB5.231<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
A07.567<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
ABB1.6370.10160.60940.44350.47410.47410.35760.4312
AB07.040<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
B04.827<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001

TaroneAAB5.131<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
AB5.153<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
A07.480<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
ABB1.4800.13880.83300.53380.59210.59210.44950.5594
AB06.887<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
B04.776<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001

WilcoxonAAB5.100<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
AB5.264<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
A07.598<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
ABB1.6880.09150.54880.41560.43760.43760.33010.3944
AB07.084<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
B04.840<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001

A statistician can use this method in usual data analysis procedure as follows. For example, to calculate the adjusted value for the comparison of the groups and ,calculate and defined in Section 2.1,use pvnorm command in mvtnorm library in R as follows:  .  .  .  ,  where is the number of all comparisons, and sigma is .

4. Conclusions

In this study, we proposed a multiple adjustment procedure for the pairwise comparisons of survival functions with right-censored data. We conducted Monte Carlo simulation studies not only to evaluate the FWE rate and power of the proposed procedure but also to compare the procedure with conventional methods. It was found that the proposed method can control the type I error rate, and it yielded similar power as Tukey’s and high power with respect to the other adjustment procedures. In addition to having a straightforward formula, it is easy to implement.

This study has some limitations. The main issue was that the simulations were performed by using proposed and conventional methods. However, comparisons can be extended including the methods such as that of Logan et al. (2005) in the comparison. Logan et al. proposed two different adjustment methods that consider the correlation among the pairwise tests. One of the methods was derived from multivariate normal distribution, while the other was obtained from a simulated martingales approach. These models may work well for the data with proportional hazard structure. Future researches should take into account the models for comparisons.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. D. Collett, Modelling Survival Data in Medical Research, CRC press, Boca Raton, Fla, USA, 2015.
  2. E. A. Gehan, “A generalized Wilcoxon test for comparing arbitrarily singly-censored samples,” Biometrika, vol. 52, pp. 203–223, 1965. View at: Publisher Site | Google Scholar | MathSciNet
  3. N. Mantel, “Evaluation of survival data and two new rank order statistics arising in its consideration,” Cancer Chemotherapy Reports, vol. 50, no. 3, pp. 163–170, 1966. View at: Google Scholar
  4. N. Breslow, “A generalized Kruskal-Wallis test for comparing k samples subject to unequal patterns of censorship,” Biometrika, vol. 57, no. 3, pp. 579–594, 1970. View at: Publisher Site | Google Scholar
  5. R. Peto and J. Peto, “Asymptotically efficient rank invariant test procedures,” Journal of the Royal Statistical Society. Series A (General), vol. 135, no. 2, p. 185, 1972. View at: Publisher Site | Google Scholar
  6. R. L. Prentice, “Linear rank tests with right censored data,” Biometrika, vol. 65, no. 1, pp. 167–179, 1978. View at: Publisher Site | Google Scholar | MathSciNet
  7. R. E. Tarone and J. Ware, “On distribution-free tests for equality of survival distributions,” Biometrika, vol. 64, no. 1, pp. 156–160, 1977. View at: Publisher Site | Google Scholar | MathSciNet
  8. D. P. Harrington and T. R. Fleming, “A class of rank test procedures for censored survival data,” Biometrika, vol. 69, no. 3, pp. 553–566, 1982. View at: Publisher Site | Google Scholar | MathSciNet
  9. B. R. Logan, H. Wang, and M.-J. Zhang, “Pairwise multiple comparison adjustment in survival analysis,” Statistics in Medicine, vol. 24, no. 16, pp. 2509–2523, 2005. View at: Publisher Site | Google Scholar | MathSciNet
  10. A. Tressler and A. Chow, “Multiple pairwise comparison procedures based on the Lin and Wang test for right censored survival data,” Statistica Neerlandica, vol. 67, no. 1, pp. 112–120, 2013. View at: Publisher Site | Google Scholar | MathSciNet
  11. J. A. Koziol and N. Reid, “On multiple comparisons among K samples subject to unequal patterns of censorship,” Communications in Statistics—Theory and Methods, vol. 6, no. 12, pp. 1149–1164, 1977. View at: Publisher Site | Google Scholar
  12. R. G. Steel, “A multiple comparison rank sum test: treatments versus control,” Biometrics, vol. 15, pp. 560–572, 1959. View at: Publisher Site | Google Scholar | MathSciNet
  13. S. Chakraborti and M. M. Desu, “Linear rank tests for comparing treatments with a control when data are subject to unequal patterns of censorship,” Statistica Neerlandica, vol. 45, no. 3, pp. 227–254, 1991. View at: Publisher Site | Google Scholar | MathSciNet
  14. Y.-I. Chen, “A generalized steel procedure for comparing several treatments with a control under random right-censorship,” Communications in Statistics—Simulation and Computation, vol. 23, no. 1, pp. 1–16, 1994. View at: Publisher Site | Google Scholar
  15. Y.-I. Chen, “Multiple comparisons in carcinogenesis study with right-censored survival data,” Statistics in Medicine, vol. 19, no. 3, pp. 353–367, 2000. View at: Publisher Site | Google Scholar
  16. A. Genz, “Numerical computation of multivariate normal probabilities,” Journal of Computational and Graphical Statistics, vol. 1, no. 2, pp. 141–149, 1992. View at: Publisher Site | Google Scholar
  17. A. Genz, “Comparison of methods for the computation of multivariate normal probabilities,” Computing Scienc e and Statistics, vol. 25, pp. 400–4005, 1993. View at: Google Scholar
  18. W. R. Kim, T. M. Therneau, J. T. Benson et al., “Deaths on the liver transplant waiting list: an analysis of competing risks,” Hepatology, vol. 43, no. 2, pp. 345–351, 2006. View at: Publisher Site | Google Scholar
  19. T. M. Therneau and T. Lumley, Package ‘survival’, Ed., Verze, 2016.

Copyright © 2017 Ertugrul Colak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder
Views1958
Downloads404
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.