Computational and Mathematical Methods in Medicine

Medical Data Analysis for Neurodegenerative Disorders Diagnosis using Computational Techniques


Publishing date
01 Jul 2022
Status
Closed
Submission deadline
11 Mar 2022

Lead Editor

1University of Petroleum and Energy Studies, Dehradun, India

2Chandigarh University, Ajitgarh, India

3King Faisal University, Hofuf, UK

This issue is now closed for submissions.
More articles will be published in the near future.

Medical Data Analysis for Neurodegenerative Disorders Diagnosis using Computational Techniques

This issue is now closed for submissions.
More articles will be published in the near future.

Description

In the medical domain, the diagnosis of neurological disorders is complicated due to the complex nervous system. Neurological disorders include epilepsy, dementia, and Alzheimer’s disease. There are also cerebrovascular diseases such as stroke, multiple sclerosis, Parkinson’s disease. According to the WHO’s report, neurological disorders affect up to one billion people worldwide. As a result, approximately 6.8 million people die from these neurological disorders every year. A prompt and well-timed diagnosis of these neurological disorders can significantly improve a patient’s life. Currently, there are a substantial number of advanced technologies to diagnose neurological disorders. For instance, magnetic resonance imaging (MRI), electroencephalogram (EEG), electromyography (EMG), computed tomography (CT), and angiogram. These technologies help doctors make accurate decisions. These technologies yield a vast amounts of data in various dimensions and sizes, ranging from a few megabytes to hundreds of megabytes, which require large storage capacities.

It is challenging to accumulate, manage, analyze, and assimilate a large amount of data because the medical data is complex in terms of velocity and volume. The visual analysis of such data is not an acceptable way for a reliable and precise diagnosis because the patient can be subject to fatigue. Furthermore, there can be errors and it can be time-consuming. Therefore, there is a need for a system that can give the support neurologists require. The system should make an accurate diagnosis in a timely manner to improve the patient’s health. Thus, medical analytics are developing automatic decision systems by utilizing computational intelligence for fast, accurate, and efficient diagnosis and prognosis. This will improve the consistency of diagnosis and increase the success of treatment, save lives, and reduce cost and time. Signal processing, medical image analysis, and integration of physiological data tackle alike challenges to deal with different big data sources. It has been noticed that experts require online computer-aided design (CAD) systems for real-time evaluation instead of offline CAD. To generate even more accurate diagnostic systems, we need to develop general feature extraction methods, robust classification methods, and efficient online CAD systems. Moreover, we should balance the trade-offs between accuracy and efficiency.

The aim of this Special Issue is to bring together original research and review articles discussing big medical data for the diagnosis of neurological disorders. We welcome submissions related to computational methods and tools for the diagnosis of neurodegenerative disorders.

Potential topics include but are not limited to the following:

  • Computer aided diagnosis systems for diagnosing neurodegenerative disorders
  • Computational methods to detect neurodegenerative disorders from medical data
  • Robust classification methods for classifying neurodegenerative disorders
  • Precise and reliable biomarkers to distinguish normal and interested disease, and differentiable between different diseases
  • Medical image analysis for diagnosing neurodegenerative disorders
  • Medical signal processing for diagnosing neurodegenerative disorders

Articles

  • Special Issue
  • - Volume 2023
  • - Article ID 9860728
  • - Retraction

Retracted: The Level of HbA1c Evaluates the Extent of Coronary Atherosclerosis Lesions and the Prognosis in Diabetes with Acute Coronary Syndrome

Computational and Mathematical Methods in Medicine
  • Special Issue
  • - Volume 2023
  • - Article ID 9764291
  • - Retraction

Retracted: Proteomics Reveals Molecular Changes in Insomnia Patients with More Dreams

Computational and Mathematical Methods in Medicine
  • Special Issue
  • - Volume 2023
  • - Article ID 9795052
  • - Retraction

Retracted: GAP-43 Induces the Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Retinal Ganglial-Like Cells

Computational and Mathematical Methods in Medicine
  • Special Issue
  • - Volume 2023
  • - Article ID 9769732
  • - Retraction

Retracted: Epidemiological Features of COVID-19 in Makkah City: A Retrospective Data Analysis

Computational and Mathematical Methods in Medicine
  • Special Issue
  • - Volume 2023
  • - Article ID 9828350
  • - Retraction

Retracted: Effect of Application of Treadmill Training on Metabolic Control and Vitamin D Level in Saudi Patients with Type 2 Diabetes Mellitus

Computational and Mathematical Methods in Medicine
  • Special Issue
  • - Volume 2023
  • - Article ID 9894827
  • - Retraction

Retracted: Analysis of Multifactor-Driven Myopia Disease Modules to Guide Personalized Treatment and Drug Development

Computational and Mathematical Methods in Medicine
  • Special Issue
  • - Volume 2023
  • - Article ID 9896038
  • - Retraction

Retracted: Ibuprofen Alleviates Acute Pancreatitis– (AP–) Induced Myocardial Injury by Inhibiting AIM2

Computational and Mathematical Methods in Medicine
  • Special Issue
  • - Volume 2023
  • - Article ID 9846912
  • - Retraction

Retracted: Diagnosis of Atherosclerotic Plaques Using Vascular Endothelial Growth Factor Receptor-2 Targeting Antibody Nano-microbubble as Ultrasound Contrast Agent

Computational and Mathematical Methods in Medicine
  • Special Issue
  • - Volume 2022
  • - Article ID 9753828
  • - Retraction

Retracted: Effects of Nutritious Meal Combined with Online Publicity and Education on Postoperative Nutrition and Psychological State in Patients with Low Rectal Cancer After Colostomy

Computational and Mathematical Methods in Medicine
  • Special Issue
  • - Volume 2022
  • - Article ID 9846086
  • - Retraction

Retracted: Effects of Afatinib on Development of Non-Small-Cell Lung Cancer by Regulating Activity of Wnt/β-Catenin Signaling Pathway

Computational and Mathematical Methods in Medicine
Computational and Mathematical Methods in Medicine
 Journal metrics
See full report
Acceptance rate42%
Submission to final decision42 days
Acceptance to publication24 days
CiteScore2.800
Journal Citation Indicator-
Impact Factor-
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.