Forest Fire Prevention, Detection, and Fighting Based on Fuzzy Logic and Wireless Sensor Networks
Table 10
Fuzzy values obtained by the fuzzifier.
ā
Variable
Value
Fuzzy values
Variable
Value
Fuzzy value
1
41,6
High(84%),Extreme (15%)
Av.
37
High(100%)
39
Low(59%),Normal(40%)
Av.
46
Normal(100%)
55
High(74%), Medium(25%)
Av.
30
Medium(100%)
10
Medium(100%)
Av.
9,5
Medium(100%)
16,5
Low (100%)
Av.
18
Normal(33%),Low(66%)
876
High(12%),Extreme(87%)
Av.
592
High(100%)
47,8
Extreme(77%), High(22%)
Av.
13,6
Medium(79%),High(20%)
2
28
Low(40%), Medium(60%)
Av.
25
Low(100%)
57
Normal(100%)
Av.
54
Normal(100%)
23
Low(35%),Medium(64%)
Av.
25
Low(24%),Medium(75%)
14,7
Medium(32%),High(67%)
Av.
12
Medium(100%)
21
Normal(100%)
Av.
20
Normal(100%)
ā
395
Normal(100%)
Av.
350
Normal(100%)
10
Medium(100%)
Av.
7
Medium(69%),Normal(30%)
3
22
Low(100%)
Av.
22,2
Low(100%)
63,19
Normal(54%),High(45%)
Av.
64,42
Normal(55%),High(44%)
7,5
Low(100%)
Av.
9,5
Low(100%)
28,83
High(100%)
Av.
32,52
High(74%), Extreme(25%)
19,1
Normal(69%),Low(30%)
Av.
21,35
Normal(100%)
546
High(100%)
Av.
454
Normal(46%), High(53%)
17,61
Medium(29%),High(70%)
Av.
1,47
Normal(85%),Medium(14%)
We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.