Complexity

Complexity / 2020 / Article
Special Issue

Modelling and Simulation of Complex Biological Systems

View this Special Issue

Research Article | Open Access

Volume 2020 |Article ID 4376279 | https://doi.org/10.1155/2020/4376279

Yuanhong Bi, Quansheng Liu, Jingyi Zhao, Wuritu Yang, "Dynamical Analyses on Beta Oscillations in a STN-GPE-GPI Model of Parkinson’s Disease", Complexity, vol. 2020, Article ID 4376279, 9 pages, 2020. https://doi.org/10.1155/2020/4376279

Dynamical Analyses on Beta Oscillations in a STN-GPE-GPI Model of Parkinson’s Disease

Academic Editor: Tongqian Zhang
Received03 Jul 2020
Accepted22 Aug 2020
Published09 Sep 2020

Abstract

Exploring the behaviors of beta oscillations in the basal ganglia is helpful to understand the mechanism of Parkinson’s disease. Studies have shown that the external and internal segments (GPe, GPi) of the globus pallidus receive different intensities of signals from the striatum in Parkinson’s disease and play different roles in the production of beta oscillations, but the relevant mechanism still remains unclear. Based on a model of the subthalamic nucleus (STN) and globus pallidus (GP), we propose an extended STN-GPe-GPi model and analyze the dynamical behaviors of beta oscillations in this model. The stability condition is obtained through theoretical analyses, and the generation of beta oscillations by the inputs from the cortex and striatum is further considered. The influence of some parameters related to GPi on its firing rate oscillations is discussed. The results obtained in this paper are expected to play a guiding role in the medical treatment of Parkinson’s disease.

1. Introduction

Parkinson’s disease is a chronic neurodegenerative disease with the symptoms of involuntary tremor of the hand and head, muscle rigidity, slow movement, and imbalance of posture [1]. The main pathological causes of Parkinson’s disease ascribe to the loss of dopamine neurons in the basal ganglia [2], which consists of the striatum, globus pallidus (GP), subthalamic nucleus (STN), compacta (SNc), and reticular (SNr) structure of the substantia nigra [35]. The loss of dopamine neurons causes beta oscillations with frequencies ranging from 13 Hz to 30 Hz in the basal ganglia [6, 7]. Therefore, it is necessary for understanding the mechanism of Parkinson’s disease to analyze the conditions of beta oscillations in the basal ganglia [8].

Many researches explored the origin of beta oscillations in the basal ganglia [912]. Van Albada et al. believed that oscillations originated from the cortical-thalamic loop and then spread to the basal ganglia with the development of the disease [13]. Holgado et al. found that the STN-GP loop in the basal ganglia plays an important role in generating oscillations, which are related to connection weight and synaptic transmission time between STN and GP [14]. Furthermore, a model with two STN and one GP populations are considered to get the stability boundary of oscillations [15, 16]. However, GP population has not been divided into the external and internal segment (GPe and GPi) in the above models, where GPi is the main output structure of the basal ganglia and also used to treat dystonia by deep brain electrical stimulation in medicine [5]. Actually, GPi and GPe are affected by different intensities from striatum to result in Parkinson’s disease. Therefore, it is necessary to add both GPe and GPi into the basal ganglia network.

Based on the above considerations, we introduce both GPe and GPi in the above model proposed by Holgado et al. as a new STN-GPe-GPi model. The mechanism of generating beta oscillations for the new model is explored through theoretical analyses and numerical simulation. The model of STN-GPe-GPi loop is given in Section 2. Section 3 shows the results. Stability analyses and bifurcation for this model are given through theory analyses. Also, the effect of inputs from the cortex and striatum and some parameters related to GPi on beta oscillations is discussed in Section 4. Finally, the conclusion is given in Section 5.

2. Model

The model of STN- GPe-GPi loop,which is an extended STN-GP model, is considered here in order to understand the mechanism of Parkinson’s disease. Actually, GP can be divided into two parts, GPe and GPi. They can receive different excitatory inputs from the cortex in Parkinson’s disease, and GPi as the output part of the basal ganglia mainly affects the activity of neurons in thalamic and cortical areas. GPe and GPi receive inhibitory and excitatory stimulations from striatum and STN, respectively, but GPe sends inhibitory signal to GPi and STN. Besides, STN also receives excitatory stimulation from the cortex (see Figure 1).

The following firing rate equations are used to describe the dynamical behavior of the model, as shown in Figure 1 [1718]:where , , and represent the firing rate of GPi,GPe, and STN; and are time constants of GP and STN; and T are synaptic connection weight and the delay of signal transmission between neural populations, respectively, and are connection weight and time delay between the neural populations and , , , , and denote connection weights and the time delays from STN to GPe and GPi, respectively, Str and Ctx are input constants from the striatum and cortex. and are activation functions of STN and GP, which are given by the following formulas [14]:where is the maximum firing rate of neuron population i and is the firing rate of neuron population i with no input. The activation functions and with their derivatives are shown in Figures 2(a) and 2(b), respectively.

The parameters and their source are given in Table 1, and the connection weights between neuron populations in healthy and disease states are given in Table 2. Figure 3 shows time series of the firing rate of healthy and disease states, which oscillates for Parkinson’s disease and reaches the steady state in the healthy state.


ParameterValueReference

6 ms[19, 20]
6 ms[2123]
14 ms[24]
27 spk/s[25]
2 spk/s[26]
300 spk/s[27]
17 spk/s[27]
400 spk/s[20, 28]
75 spk/s[28, 29]


ParameterHealthy stateParkinson’s disease

1.1210.7
19.020.0
19.020.0
6.6012.3
2.429.2
15.1139.4

3. Results and Discussion

3.1. Stability Analyses for the STN-GPE-GPI Model

In this section, we obtain the following equations (5)–(7) by simplifying equations (1)–(3) with without inputs from the striatum and cortex and the identical and :

Equations (5)–(7) are given in matrix form as follows:

Let

Using Laplace transform [30],

Equation (8) can be given as follows:

Without loss of generality, let

Then,where is the eigenvalue of the characteristic equation and is the unit matrix. Taking the determinant on both sides of matrix (13),then

, so

Let and be expanded by Euler transformation, and equation (16) is changed into

For simplification, let and ,equation (17) can be written as follows:

Let the real part and the imaginary part be zero, respectively:

Add the squares of (19) and (20) to get the following equation:

Bring equation (21) into equation (19), and we get stability boundary of the linear system:

So, the linear model equations (5)–(7) oscillate at the following condition:

3.2. Stability Analysis for the Nonlinear Model

For the nonlinear model with activation functions, we linearize the activation functions at the steady state and get the characteristic equation (24) in a matrix form based on the steps in Section 3.1.where

Therefore, the stability boundary of the nonlinear model is as follows:

The oscillation condition is

We analyze the stability of the model shown in Figure 1 and get the stability conditions equations (22) and (26) for the linear and nonlinear model, respectively. Next, we draw the stability boundary curves of equations (22) and (26) and explore the effect of the inputs from the striatum and cortex on oscillation through numerical simulation.

3.3. Numerical Simulation of Stability Conditions

Figures 4(a) and 4(b) describe the stability boundary curves of linear and nonlinear models based on equations (22) and (26), respectively. The decreasing boundary curve is infinitely close to x-axis with the increase of . The system oscillates for parameter values above the curve while it is stable for ones below the curve. However, the nonlinear system oscillate for a larger weight than the one of linear system at the same .

Figures 4(c) and 4(d), respectively, show the influence of the inputs from the cortex and striatum on the stability of the nonlinear system. The boundary curve of the cortex is in the shape of “U,” where the system will oscillate in the area of above “U” and it will reach a stable steady state in the area below “U.” While the boundary curve of the striatum decreases to x-axis with the increase of the input of the striatum.

In this section, the effect of three groups of parameters related to GPi, , , and , on oscillation frequency (Figures 5 (a1)–(a3)) and amplitude (Figures 5 (b1)–(b3)) are also considered. Besides, time series of the GPI firing rate are given in Figure 6 for typical parameter values in each group of parameters in order to clearly see the influence of these parameters on the frequency and amplitude of GPi oscillation. We set the frequency of the stable steady state to be 0. As can be seen from Figures 5 (a1) and (b1), the plane is divided into two parts, where the firing rate of GPi reaches a steady state for parameters taken in the blue area of the upper half while it will oscillate for parameters taken in the red area of the lower half. Frequency of oscillation with 14 Hz almost is not affected by and , while smaller and larger increase the amplitude of oscillation to 180. Figures 5 (a2) and (b2) shows that the firing rate of GPi always oscillates with beta frequency band of about 14 Hz and lower amplitudes for otherwise alpha oscillations with frequency of 8 Hz–12 Hz and higher amplitude for . Besides, Figure 5 (a3) shows that the firing rate of GPi reaches the steady state for smaller () while it oscillates for large (), where the frequency and amplitude increase for smaller and larger .

Furthermore, time series of the GPi firing rate are given in Figure 6 for three pairs of parameters from each group of parameter plane in Figure 5 to clearly see the influence of these parameters on the frequency and amplitude of the GPi firing rate. It can be seen from Figures 6 (a1)–(a3) that the firing rate of GPi oscillates for smaller and larger . According to Figures 6 (b1)–(b3), the firing rate of GPi always oscillates with smaller amplitude and larger frequency for smaller and while the case is opposite for larger and . Figures 6 (c1)–(c3) show that larger makes the firing rate of GPi oscillate and larger increases the amplitude of oscillation.

To sum up, the connection weights between neurons have a great influence on oscillation of the GPi firing rate, where smaller and larger , easily induce the oscillation of the GPi firing rate. However, transmission delays between neurons affect the amplitude of the GPi firing rate, where larger and smaller will increase the amplitude.

5. Conclusions

Analyzing the conditions of beta oscillation in the basal ganglia is helpful to understand the mechanism of Parkinson’s disease. In this paper, we analyze the conditions of beta oscillation in the STN-GPe-GPi model for different cases. First, stability analyses give stability boundary condition equations (22) and (26) for the linear system and nonlinear system, respectively, which are shown in Figures 4(a) and 4(b). The nonlinear system oscillates for larger connection weight than the one of the linear system due to activation function. In addition, we consider the influence of the cortex and striatum as external input of the STN-GPe-GPi loop on the stability boundary of the nonlinear system. As can be seen from Figures 4(c) and 4(d), the nonlinear system is in the state of oscillation for or . Comparing with the results in [15], the stability boundary system in this model moves to the right and other results almost are consistent with the ones in [15]. Furthermore, it can be seen from numerical simulation that the influence of the connection weights and delays is related to GPi on its oscillation. Smaller connection weight from GPe to GPi () and larger one from STN to GPe () make the system oscillate easily, regardless of connection weight () and transmission delay () from STN to GPi. We hope that the results may provide guidance for the therapy of reducing pathological oscillations of PD, especially for the operation of the region related to GPi. However, it is necessary to consider a more complete neural network related to Parkinson’s disease and explore the conditions of beta oscillation in response to different time delay, noise, and temperature [31]. Furthermore, we will investigate the pathogenesis of Parkinson’s disease from the perspective of systems’ biology in the future [32].

Data Availability

The data used to support the findings of the study can be obtained from the link https://pan.baidu.com/s/1HCTdFTukmkp29_kushR6Bg (password: hypg) and from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant nos. 11562014, 11702149, and 61861036) and Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant nos. 2017MS0105 and 2017MS0108).

References

  1. R. J. Moran, N. Mallet, V. Litvak et al., “Alterations in brain connectivity underlying beta oscillations in parkinsonism,” PloS Computational Biology, vol. 7, no. 8, Article ID e1002124, 2011. View at: Publisher Site | Google Scholar
  2. T. Boraud, P. Brown, J. A. Goldberg et al., The Basal Ganglia VIII, Springer, New York, NY, USA, 2005.
  3. G. Porenta, “A computer model of neuronal pathways in the basal ganglia,” Computer Methods and Programs in Biomedicine, vol. 22, no. 3, pp. 325–331, 1986. View at: Publisher Site | Google Scholar
  4. B. Degos, J.-M. Deniau, B. Degos, and C. Bosch, “Evidence for a direct subthalamo-cortical loop circuit in the rat,” Journal of Neuroscience, vol. 27, no. 10, pp. 2599–2610, 2008. View at: Publisher Site | Google Scholar
  5. F. Liu, J. Wang, C. Liu et al., “A neural mass model of basal ganglia nuclei simulates pathological beta rhythm in parkinson’s disease,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 26, no. 12, p. 123113, 2016. View at: Publisher Site | Google Scholar
  6. N. Mallet, A. Pogosyan, L. F. Marton et al., “Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity,” Journal of Neuroscience, vol. 28, no. 52, pp. 14245–14258, 2008. View at: Publisher Site | Google Scholar
  7. P. J. Magill, A. Pogosyan, A. Sharott, J. Csicsvari, J. P. Bolam, and P. Brown, “Changes in functional connectivity within the rat striatopallida axis during global brain activation in vivo,” The Journal of Neuroscience, vol. 26, no. 23, pp. 6318–6329, 2006. View at: Publisher Site | Google Scholar
  8. R. Bogacz, Basal Ganglia: Beta Oscillations, Springer, New York, NY, USA, 2015.
  9. A. J. Nevado-Holgado, N. Mallet, P. J. Magill et al., “Effective connectivity of the subthalamic nucleus –globus pallidus network during parkinsonian oscillations,” Journal of Physiology, vol. 592, no. 7, pp. 1429–1455, 2014. View at: Publisher Site | Google Scholar
  10. H. Yan and J. Wang, “Quantification of motor network dynamics in parkinson’s disease by means of landscape and flux theory,” PLoS One, vol. 12, no. 3, pp. 1–21, 2017. View at: Publisher Site | Google Scholar
  11. J. E. Rubin, “Computational models of basal ganglia dysfunction: the dynamics is in the details,” Current Opinion in Neurobiology, vol. 46, pp. 127–135, 2017. View at: Publisher Site | Google Scholar
  12. Y. Yu and Q. Y. Wang, “Oscillation dynamics in an extended model of thalamic-basal ganglia,” Nonlinear Dynamics, vol. 98, no. 4, pp. 1065–1080, 2019. View at: Publisher Site | Google Scholar
  13. S. J. Van Albada, R. T. Gray, P. M. Drysdale, and P. A. Robinson, “Mean-field modeling of the basal ganglia-thalamocortical system. II,” Journal of Theoretical Biology, vol. 257, no. 4, pp. 664–688, 2009. View at: Publisher Site | Google Scholar
  14. A. J. N. Holgado, J. R. Terry, and R. Bogacz, “Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network,” Journal of Neuroscience, vol. 30, no. 37, pp. 12340–12352, 2010. View at: Publisher Site | Google Scholar
  15. B. Hu and Q. Wang, “The conditions for onset of beta oscillations in an extended subthalamic nucleus-globus pallidus network,” Science China Technological Sciences, vol. 57, no. 10, pp. 2020–2027, 2014. View at: Publisher Site | Google Scholar
  16. A. Pavlides, S. John Hogan, and R. Bogacz, “Improved conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network,” European Journal of Neuroscience, vol. 36, no. 2, pp. 2229–2239, 2012. View at: Publisher Site | Google Scholar
  17. Y. H. Wang, Stereotactic Neurosurgery, People’s Medical Publishing House, Beijing, China, 2005.
  18. P. Dayan and L. F. Abbott, Theoretical Neuroscience, MIT Press, Cambridge, MA, USA, 2001.
  19. T. P. Vogels, K. Rajan, and L. F. Abbott, “Neural network dynamics,” Annual Review of Neuroscience, vol. 28, no. 1, pp. 357–376, 2005. View at: Publisher Site | Google Scholar
  20. K. Fujimoto and H. Kita, “Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat,” Brain Research, vol. 609, pp. 1-2, 1993. View at: Publisher Site | Google Scholar
  21. H. Kita, “Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey,” Journal of Neuroscience, vol. 25, no. 38, pp. 8611–8619, 2005. View at: Publisher Site | Google Scholar
  22. H. Kita, H. T. Chang, and S. T. Kitai, “Pallidal inputs to subthalamus: intracellular analysis,” Brain Research, vol. 264, no. 2, pp. 255–265, 1983. View at: Publisher Site | Google Scholar
  23. H. Nakanishi, H. Kita, and S. T. Kitai, “Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation,” Brain Research, vol. 437, no. 1, pp. 0–55, 1987. View at: Publisher Site | Google Scholar
  24. J. T. Paz and J. M. Deniau, “Rhythmic bursting in the cortico-subthalamo-pallidal network during spontaneous genetically determined spike and wave discharges,” Journal of Neuroscience, vol. 25, no. 8, pp. 2092–2101, 2005. View at: Publisher Site | Google Scholar
  25. H. Kita and S. T. Kitai, “Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation,” Brain Research, vol. 564, no. 2, pp. 296–305, 1991. View at: Publisher Site | Google Scholar
  26. M. A. Lebedev and S. P. Wise, “Oscillations in the premotor cortex: single-unit activity from awake, behaving monkeys,” Experimental Brain Research, vol. 130, no. 2, pp. 195–215, 2000. View at: Publisher Site | Google Scholar
  27. W. Schultz and R. Romo, “Neuronal activity in the monkey striatum during the initiation of movements,” Experimental Brain Research, vol. 71, no. 2, pp. 431–436, 1988. View at: Publisher Site | Google Scholar
  28. E. Nicholas, J. C. Wilson, and D. Mark, “Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro,” Journal of Neuroscience, vol. 23, no. 20, pp. 7525–7542, 2003. View at: Publisher Site | Google Scholar
  29. H. Kita, “Globus pallidus external segment,” Progress in Brain Research, vol. 160, no. 1, pp. 111–133, 2007. View at: Publisher Site | Google Scholar
  30. H. Kita, A. Nambu, K. Kaneda, Y. Tachibana, and M. Takada, “Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys,” Journal of Neurophysiology, vol. 92, no. 5, pp. 3069–3084, 2004. View at: Publisher Site | Google Scholar
  31. Y. Li and R. Y. Wei, “Dynamic analysis and synchronization control of the discrete coupled complex network model with delay and non-delay,” Mathematical Modeling and Its Applications, vol. 6, no. 4, pp. 18–23, 2017. View at: Google Scholar
  32. T. S. Zhou and Y. Tang, “Modeling and analysis of biomolecular systems,” Mathematical Modeling and Its Applications, vol. 6, no. 1, pp. 1–12, 2017. View at: Google Scholar

Copyright © 2020 Yuanhong Bi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder
Views242
Downloads288
Citations

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.