Complexity

Overcoming “Big Data” Barriers in Machine Learning Techniques for the Real-Life Applications


Status
Published

1Gdynia Maritime University, Gdynia, Poland

2Yildiz Technical University, Istanbul, Turkey

3Coventry University, Coventry, UK


Overcoming “Big Data” Barriers in Machine Learning Techniques for the Real-Life Applications

Description

Today quantity of data produced daily by various information systems can be measured in “zetabytes.” The question of how to solve large and complex machine learning and combinatorial optimization problems is nowadays the focus of numerous research teams. Advances in dealing with big data problems, albeit in many cases spectacular, are far from being satisfactory for the real-life applications. This becomes especially true in numerous domains where machine learning tasks are crucial to obtain knowledge on different processes and properties in areas such as bioinformatics, text mining, or security. Unfortunately, majority of the current machine learning algorithms become ineffective when the problem becomes very large since underlying combinatorial optimization problems are, as a rule, computationally difficult. There exists a variety of methods and tools which are excellent at solving small and medium size machine learning tasks but become unsatisfactory when dealing with the large ones.

The purpose of this special issue is to publish high-quality research papers as well as review articles addressing recent advances in the machine learning techniques and their applications when dealing with large and complex problems.

Current hot topics in the quest to improve effectiveness of the machine learning techniques include search for a compact knowledge representation methods and better tools for knowledge discovery and integration. Machine learning may also profit from integrating collective intelligence techniques, applying evolutionary and the bioinspired techniques, and exploring further deep and extreme learning techniques.

This special issue deals with the importance of solving large and complex problems in the domain of machine learning and other relevant fields. Papers on the real-life applications of machine learning techniques are especially welcomed.

Topics of the submitted papers should focus on methods and applications, where specialized tools and techniques are used to enhance, support, or replace traditional approaches to machine learning and data mining.

Potential topics include but are not limited to the following:

  • Tools and techniques for solving complex machine learning problems
  • Computational intelligence applications for machine learning
  • Evolutionary and coevolutionary algorithms and their applications for machine learning
  • Data analysis methods based on rough sets, fuzzy sets, Bayesian networks, and artificial neural networks
  • Adaptive and evolving learning methodologies for big data analysis
  • Data stream mining
  • Optimization and strategies for machine learning
  • Collective decision making for machine learning
  • Multiagent system and agent-based modeling for machine learning
  • Real-life applications of the machine learning techniques
  • Other related topics

Articles

  • Special Issue
  • - Volume 2018
  • - Article ID 1234390
  • - Editorial

Overcoming “Big Data” Barriers in Machine Learning Techniques for the Real-Life Applications

Ireneusz Czarnowski | Piotr Jedrzejowicz | ... | Tülay Yildirim
  • Special Issue
  • - Volume 2018
  • - Article ID 1297150
  • - Research Article

Simulations of Learning, Memory, and Forgetting Processes with Model of CA1 Region of the Hippocampus

Dariusz Świetlik
  • Special Issue
  • - Volume 2018
  • - Article ID 2065491
  • - Research Article

Enhancing the Efficiency of a Decision Support System through the Clustering of Complex Rule-Based Knowledge Bases and Modification of the Inference Algorithm

Agnieszka Nowak-Brzezińska
  • Special Issue
  • - Volume 2018
  • - Article ID 9837462
  • - Research Article

Stability Analysis of the Bat Algorithm Described as a Stochastic Discrete-Time State-Space System

Janusz Piotr Paplinski
  • Special Issue
  • - Volume 2018
  • - Article ID 5967604
  • - Research Article

Approximate Method to Evaluate Reliability of Complex Networks

Petru Caşcaval
  • Special Issue
  • - Volume 2018
  • - Article ID 6794067
  • - Research Article

Incremental Gene Expression Programming Classifier with Metagenes and Data Reduction

Joanna Jedrzejowicz | Piotr Jedrzejowicz
  • Special Issue
  • - Volume 2018
  • - Article ID 7404627
  • - Research Article

An Approach to Data Reduction for Learning from Big Datasets: Integrating Stacking, Rotation, and Agent Population Learning Techniques

Ireneusz Czarnowski | Piotr Jędrzejowicz
  • Special Issue
  • - Volume 2018
  • - Article ID 7408431
  • - Research Article

Using Deep Learning to Predict Sentiments: Case Study in Tourism

C. A. Martín | J. M. Torres | ... | S. Diaz
  • Special Issue
  • - Volume 2018
  • - Article ID 8487641
  • - Research Article

An Efficient Method for Mining Erasable Itemsets Using Multicore Processor Platform

Bao Huynh | Bay Vo
  • Special Issue
  • - Volume 2018
  • - Article ID 2520706
  • - Research Article

Integrating Correlation-Based Feature Selection and Clustering for Improved Cardiovascular Disease Diagnosis

Agnieszka Wosiak | Danuta Zakrzewska
Complexity
 Journal metrics
Acceptance rate38%
Submission to final decision68 days
Acceptance to publication52 days
CiteScore2.690
Impact Factor2.591
 Submit
 Author guidelines  Editorial board  Databases and indexing
 Sign up for content alertsSign up

Publishing Collaboration

More info
Wiley-Hindawi