Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2010 (2010), Article ID 656481, 13 pages
http://dx.doi.org/10.1155/2010/656481
Review Article

S100B Protein, a Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond

Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy

Received 30 March 2010; Accepted 8 June 2010

Academic Editor: Claus W. Heizmann

Copyright © 2010 Guglielmo Sorci et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Donato, “S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles,” International Journal of Biochemistry and Cell Biology, vol. 33, no. 7, pp. 637–668, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Marenholz, C. W. Heizmann, and G. Fritz, “S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature),” Biochemical and Biophysical Research Communications, vol. 322, no. 4, pp. 1111–1122, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. C. W. Heizmann and G. Fritz, “The family of S100 cell signaling proteins,” in Handbook of Cell Signaling, R. A. Bradshaw and E. A. Dennis, Eds., pp. 983–994, Academic Press, Oxford, UK, 2nd edition, 2009. View at Google Scholar
  4. R. Donato, “Perspectives in S-100 protein biology,” Cell Calcium, vol. 12, no. 10, pp. 713–726, 1991. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Donato, “Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type,” Biochimica et Biophysica Acta, vol. 1450, no. 3, pp. 191–231, 1999. View at Publisher · View at Google Scholar
  6. C. W. Heizmann, G. Fritz, and B. W. Schäfer, “S100 proteins: structure, functions and pathology,” Front Biosci, vol. 7, pp. 1356–1368, 2002. View at Google Scholar
  7. L. Santamaria-Kisiel, A. C. Rintala-Dempsey, and G. S. Shaw, “Calcium-dependent and -independent interactions of the S100 protein family,” Biochemical Journal, vol. 396, no. 2, pp. 201–214, 2006. View at Publisher · View at Google Scholar · View at PubMed
  8. R. Donato, “RAGE: a single receptor for several ligands and different cellular responses: the case of certain S100 proteins,” Current Molecular Medicine, vol. 7, no. 8, pp. 711–724, 2007. View at Publisher · View at Google Scholar
  9. E. Leclerc, G. Fritz, S. W. Vetter, and C. W. Heizmann, “Binding of S100 proteins to RAGE: an update,” Biochimica et Biophysica Acta, vol. 1793, no. 6, pp. 993–1007, 2009. View at Publisher · View at Google Scholar · View at PubMed
  10. R. Donato, G. Sorci, and G. Sorci, “S100B's double life: intracellular regulator and extracellular signal,” Biochimica et Biophysica Acta, vol. 1793, no. 6, pp. 1008–1022, 2009. View at Publisher · View at Google Scholar · View at PubMed
  11. J. N. Tsoporis, C. B. Overgaard, S. Izhar, and T. G. Parker, “S100B modulates the hemodynamic response to norepinephrine stimulation,” American Journal of Hypertension, vol. 22, no. 10, pp. 1048–1053, 2009. View at Publisher · View at Google Scholar · View at PubMed
  12. C. Tubaro, C. Arcuri, I. Giambanco, and R. Donato, “S100B protein in myoblasts modulates myogenic differentiation via NF-κB-dependent inhibition of MyoD expression,” Journal of Cellular Physiology, vol. 223, no. 1, pp. 270–282, 2010. View at Publisher · View at Google Scholar · View at PubMed
  13. T. G. Parker, A. Marks, and J. N. Tsoporis, “Induction of S100b in myocardium: an intrinsic inhibitor of cardiac hypertrophy,” Canadian Journal of Applied Physiology, vol. 23, no. 4, pp. 377–389, 1998. View at Google Scholar
  14. J. N. Tsoporis, A. Marks, L. J. Van Eldik, D. O'Hanlon, and T. G. Parker, “Regulation of the S100B gene by α1-adrenergic stimulation in cardiac myocytes,” American Journal of Physiology, vol. 284, no. 1, pp. H193–H203, 2003. View at Google Scholar
  15. J. N. Tsoporis, A. Marks, A. Haddad, F. Dawood, P. P. Liu, and T. G. Parker, “S100B expression modulates left ventricular remodeling after myocardial infarction in mice,” Circulation, vol. 111, no. 5, pp. 598–606, 2005. View at Publisher · View at Google Scholar · View at PubMed
  16. F. Suzuki, K. Kato, and T. Nakajima, “Hormonal regulation of adipose S-100 protein release,” Journal of Neurochemistry, vol. 43, no. 5, pp. 1336–1341, 1984. View at Google Scholar
  17. J. Sen and A. Belli, “S100B in neuropathologic states: the CRP of the brain?” Journal of Neuroscience Research, vol. 85, no. 7, pp. 1373–1380, 2007. View at Publisher · View at Google Scholar · View at PubMed
  18. J. Lin, M. Blake, C. Tang, D. Zimmer, R. R. Rustandi, D. J. Weber, and F. Carrier, “Inhibition of p53 transcriptional activity by the S100B calcium-binding protein,” The Journal of Biological Chemistry, vol. 276, no. 37, pp. 35037–35041, 2001. View at Publisher · View at Google Scholar · View at PubMed
  19. J. Markowitz, I. Chen, and I. Chen, “Identification and characterization of small molecule inhibitors of the calcium-dependent S100B-p53 tumor suppressor interaction,” Journal of Medicinal Chemistry, vol. 47, no. 21, pp. 5085–5093, 2004. View at Publisher · View at Google Scholar · View at PubMed
  20. J. Smith, B. J. Stewart, S. Glaysher, K. Peregrin, L. A. Knight, D. J. Weber, and I. A. Cree, “The effect of pentamidine on melanoma ex vivo,” Anti-Cancer Drugs, vol. 21, no. 2, pp. 181–185, 2010. View at Publisher · View at Google Scholar · View at PubMed
  21. C. Arcuri, R. Bianchi, F. Brozzi, and R. Donato, “S100B increases proliferation in PC12 neuronal cells and reduces their responsiveness to nerve growth factor via Akt activation,” The Journal of Biological Chemistry, vol. 280, no. 6, pp. 4402–4414, 2005. View at Publisher · View at Google Scholar · View at PubMed
  22. F. Brozzi, C. Arcuri, I. Giambanco, and R. Donato, “S100B protein regulates astrocyte shape and migration via interaction with Src Kinase: implications for astrocyte development, activation, and tumor growth,” The Journal of Biological Chemistry, vol. 284, no. 13, pp. 8797–8811, 2009. View at Publisher · View at Google Scholar · View at PubMed
  23. T. Saito, T. Ikeda, K. Nakamura, U.-I. Chung, and H. Kawaguchi, “S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes,” EMBO Reports, vol. 8, no. 5, pp. 504–509, 2007. View at Publisher · View at Google Scholar · View at PubMed
  24. E. Raponi, F. Agenes, C. Delphin, N. Assard, J. Baudier, C. Legraverend, and J.-C. Deloulme, “S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage,” Glia, vol. 55, no. 2, pp. 165–177, 2007. View at Publisher · View at Google Scholar · View at PubMed
  25. R. L. Rietze and B. A. Reynolds, “Neural stem cell isolation and characterization,” Methods in Enzymology, vol. 419, pp. 3–23, 2006. View at Publisher · View at Google Scholar · View at PubMed
  26. P. M. Whitaker-Azmitia, M. Wingate, A. Borella, R. Gerlai, J. Roder, and E. C. Azmitia, “Transgenic mice overexpressing the neurotrophic factor S-100β show neuronal cytoskeletal and behavioral signs of altered aging processes: implications for Alzheimer's disease and Down's syndrome,” Brain Research, vol. 776, no. 1-2, pp. 51–60, 1997. View at Publisher · View at Google Scholar
  27. G. Esposito, J. Imitola, and J. Imitola, “Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury,” Human Molecular Genetics, vol. 17, no. 3, pp. 440–457, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. M. V. Sofroniew, “Molecular dissection of reactive astrogliosis and Glial scar formation,” Trends in Neurosciences, vol. 32, no. 12, pp. 638–647, 2009. View at Publisher · View at Google Scholar · View at PubMed
  29. C. Rommel, M. Camps, and H. Ji, “PI3Kδ and PI3Kγ: partners in crime in inflammation in rheumatoid arthritis and beyond?” Nature Reviews Immunology, vol. 7, no. 3, pp. 191–201, 2007. View at Publisher · View at Google Scholar · View at PubMed
  30. D. A. Fruman and G. Bismuth, “Fine tuning the immune response with PI3K,” Immunological Reviews, vol. 228, no. 1, pp. 253–272, 2009. View at Publisher · View at Google Scholar · View at PubMed
  31. C. Farina, F. Aloisi, and E. Meinl, “Astrocytes are active players in cerebral innate immunity,” Trends in Immunology, vol. 28, no. 3, pp. 138–145, 2007. View at Publisher · View at Google Scholar · View at PubMed
  32. F. Herrera, Q. Chen, W. H. Fischer, P. Maher, and D. R. Schubert, “Synaptojanin-1 plays a key role in astrogliogenesis: possible relevance for Down's syndrome,” Cell Death and Differentiation, vol. 16, no. 6, pp. 910–920, 2009. View at Publisher · View at Google Scholar · View at PubMed
  33. C.-Y. Wu, H.-L. Hsieh, C.-C. Sun, C.-P. Tseng, and C.-M. Yang, “IL-1β induces proMMP-9 expression via c-Src-dependent PDGFR/PI3K/Akt/p300 cascade in rat brain astrocytes,” Journal of Neurochemistry, vol. 105, no. 4, pp. 1499–1512, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. Y. Ke, G. Jiang, D. Sun, H. J. Kaplan, and H. Shao, “Retinal astrocytes respond to IL-17 differently than retinal pigment epithelial cells,” Journal of Leukocyte Biology, vol. 86, no. 6, pp. 1377–1384, 2009. View at Publisher · View at Google Scholar · View at PubMed
  35. H.-H. Wang, H.-L. Hsieh, C.-Y. Wu, C.-C. Sun, and C.-M. Yang, “Oxidized low-density lipoprotein induces matrix metalloproteinase-9 expression via a p42/p44 and JNK-dependent AP-1 pathway in brain astrocytes,” Glia, vol. 57, no. 1, pp. 24–38, 2009. View at Publisher · View at Google Scholar · View at PubMed
  36. J. Wu, J. R. Wrathall, and M. Schachner, “Phosphatidylinositol 3-Kinase/protein Kinase Cdelta activation induces close homolog of adhesion molecule L1 (CHL1) expression in cultured astrocytes,” Glia, vol. 58, pp. 315–238, 2010. View at Google Scholar
  37. H. Kato, R. Kurosaki, C. Oki, and T. Araki, “Arundic acid, an astrocyte-modulating agent, protects dopaminergic neurons against MPTP neurotoxicity in mice,” Brain Research, vol. 1030, no. 1, pp. 66–73, 2004. View at Publisher · View at Google Scholar · View at PubMed
  38. T. Asano, T. Mori, and T. Mori, “Arundic acid (ONO-2506) ameliorates delayed ischemic brain damage by preventing astrocytic overproduction of S100B,” Current Drug Targets, vol. 4, no. 2, pp. 127–142, 2005. View at Publisher · View at Google Scholar
  39. T. Mori, J. Tan, G. W. Arendash, N. Koyama, Y. Nojima, and T. Town, “Overexpression of human S100B exacerbates brain damage and periinfarct gliosis after permanent focal ischemia,” Stroke, vol. 39, no. 7, pp. 2114–2121, 2008. View at Publisher · View at Google Scholar · View at PubMed
  40. M. S. Wainwright, J. M. Craft, W. S. T. Griffin, A. Marks, J. Pineda, K. R. Padgett, and L. J. Van Eldik, “Increased susceptibility of S100B transgenic mice to peinatal hypoxia-ischemia,” Annals of Neurology, vol. 56, no. 1, pp. 61–67, 2004. View at Publisher · View at Google Scholar · View at PubMed
  41. T. Mori, N. Koyama, G. W. Arendash, Y. Horikoshi-Sakuraba, J. Tan, and T. Town, “Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer's disease,” Glia, vol. 58, no. 3, pp. 300–314, 2010. View at Publisher · View at Google Scholar · View at PubMed
  42. L. J. Van Eldik and M. S. Wainwright, “The Janus face of Glial-derived S100B: beneficial and detrimental functions in the brain,” Restorative Neurology and Neuroscience, vol. 21, no. 3-4, pp. 97–108, 2003. View at Google Scholar
  43. Z.-G. Xiong, D. O'Hanlon, L. E. Becker, J. Roder, J. F. MacDonald, and A. Marks, “Enhanced calcium transients in Glial cells in neonatal cerebellar cultures derived from S100B null mice,” Experimental Cell Research, vol. 257, no. 2, pp. 281–289, 2000. View at Publisher · View at Google Scholar · View at PubMed
  44. H. Haase, J. Alvarez, D. Petzhold et al., “Ahnak is critical for cardiac Ca(V)1.2 calcium channel function and its beta-adrenergic regulation,” The FASEB Journal, vol. 13, pp. 2161–2172, 1999. View at Google Scholar
  45. I. H. Lee, J. O. You, K. S. Ha, D. S. Bae, P.-G. Suh, S. G. Rhee, and Y. S. Bae, “AHNAK-mediated activation of phospholipase C-γ1 through protein Kinase C,” The Journal of Biological Chemistry, vol. 279, no. 25, pp. 26645–26653, 2004. View at Publisher · View at Google Scholar · View at PubMed
  46. B. J. Gentil, C. Delphin, C. Benaud, and J. Baudier, “Expression of the giant protein AHNAK (desmoyokin) in muscle and lining epithelial cells,” Journal of Histochemistry and Cytochemistry, vol. 51, no. 3, pp. 339–348, 2003. View at Google Scholar
  47. B. J. Gentil, C. Delphin, G. O. Mbele, J. C. Deloulme, M. Ferro, J. Garin, and J. Baudier, “The giant protein AHNAK is a specific target for the calcium-and zinc-binding S100B protein: potential implications for Ca2+ homeostasis regulation by S100B,” The Journal of Biological Chemistry, vol. 276, no. 26, pp. 23253–23261, 2001. View at Publisher · View at Google Scholar · View at PubMed
  48. F. Michetti, A. Massaro, and M. Murazio, “The nervous system-specific S-100 antigen in cerebrospinal fluid of multiple sclerosis patients,” Neuroscience Letters, vol. 11, no. 2, pp. 171–175, 1979. View at Publisher · View at Google Scholar
  49. V. E. Shashoua, G. W. Hesse, and B. W. Moore, “Proteins of the brain extracellular fluid: evidence for release of S-100 protein,” Journal of Neurochemistry, vol. 42, no. 6, pp. 1536–1541, 1984. View at Google Scholar
  50. L. J. Van Eldik and D. B. Zimmer, “Secretion of S-100 from rat C6 glioma cells,” Brain Research, vol. 436, no. 2, pp. 367–370, 1987. View at Google Scholar
  51. P. Nardin, L. Tortorelli, and L. Tortorelli, “S100B secretion in acute brain slices: modulation by extracellular levels of Ca2+ and K+,” Neurochemical Research, vol. 34, no. 9, pp. 1603–1611, 2009. View at Publisher · View at Google Scholar · View at PubMed
  52. D. F. de Souza, M. C. Leite, and M. C. Leite, “S100B secretion is stimulated by IL-1β in Glial cultures and hippocampal slices of rats: likely involvement of MAPK pathway,” Journal of Neuroimmunology, vol. 206, no. 1-2, pp. 52–57, 2009. View at Publisher · View at Google Scholar · View at PubMed
  53. M. C. Leite, F. Galland, and F. Galland, “Gap junction inhibitors modulate S100B secretion in astrocyte cultures and acute hippocampal slices,” Journal of Neuroscience Research, vol. 87, no. 11, pp. 2439–2446, 2009. View at Publisher · View at Google Scholar · View at PubMed
  54. T. Ostendorp, E. Leclerc, and E. Leclerc, “Structural and functional insights into RAGE activation by multimeric S100B,” The EMBO Journal, vol. 26, no. 16, pp. 3868–3878, 2007. View at Publisher · View at Google Scholar · View at PubMed
  55. W. Ma, S. E. Lee, J. Guo, W. Qu, B. I. Hudson, A. M. Schmidt, and G. R. Barile, “RAGE ligand upregulation of VEGF secretion in ARPE-19 cells,” Investigative Ophthalmology and Visual Science, vol. 48, no. 3, pp. 1355–1361, 2007. View at Publisher · View at Google Scholar · View at PubMed
  56. D. Kligman and D. R. Marshak, “Purification and characterization of a neurite extension factor from bovine brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 20, pp. 7136–7139, 1985. View at Google Scholar
  57. D. R. Marshak, S. A. Pesce, L. C. Stanley, and W. S. T. Griffin, “Increased S100β neurotrophic activity in Alzheimer's disease temporal lobe,” Neurobiology of Aging, vol. 13, no. 1, pp. 1–7, 1992. View at Publisher · View at Google Scholar
  58. G. Fanò, M. A. Mariggiò, P. Angelella, I. Nicoletti, A. Antonica, S. Fulle, and P. Calissano, “The S-100 protein causes an increase of intracellular calcium and death of PC12 cells,” Neuroscience, vol. 53, no. 4, pp. 919–925, 1993. View at Publisher · View at Google Scholar
  59. J. Hu, A. Ferreira, and L. J. Van Eldik, “S100β induces neuronal cell death through nitric oxide release from astrocytes,” Journal of Neurochemistry, vol. 69, no. 6, pp. 2294–2301, 1997. View at Google Scholar
  60. T. V. Petrova, J. Hu, and L. J. Van Eldik, “Modulation of Glial activation by astrocyte-derived protein S100B: differential responses of astrocyte and microGlial cultures,” Brain Research, vol. 853, no. 1, pp. 74–80, 2000. View at Publisher · View at Google Scholar
  61. C. Adami, G. Sorci, E. Blasi, A. L. Agneletti, F. Bistoni, and R. Donato, “S100B expression in and effects on microGlia,” Glia, vol. 33, no. 2, pp. 131–142, 2001. View at Publisher · View at Google Scholar
  62. J. Hu, F. Castets, J. L. Guevara, and L. J. Van Eldiki, “S100β stimulates inducible nitric oxide synthase activity and mRNA levels in rat cortical astrocytes,” The Journal of Biological Chemistry, vol. 271, no. 5, pp. 2543–2547, 1996. View at Publisher · View at Google Scholar
  63. A. G. M. Lam, T. Koppal, and T. Koppal, “Mechanism of Glial activation by S100B: involvement of the transcription factor NFκB,” Neurobiology of Aging, vol. 22, no. 5, pp. 765–772, 2001. View at Publisher · View at Google Scholar
  64. R. Bianchi, C. Adami, I. Giambanco, and R. Donato, “S100B binding to RAGE in microGlia stimulates COX-2 expression,” Journal of Leukocyte Biology, vol. 81, no. 1, pp. 108–118, 2007. View at Publisher · View at Google Scholar · View at PubMed
  65. G. Ponath, C. Schettler, F. Kaestner, B. Voigt, D. Wentker, V. Arolt, and M. Rothermundt, “Autocrine S100B effects on astrocytes are mediated via RAGE,” Journal of Neuroimmunology, vol. 184, no. 1-2, pp. 214–222, 2007. View at Publisher · View at Google Scholar · View at PubMed
  66. R. Bianchi, I. Giambanco, and R. Donato, “S100B/RAGE-dependent activation of microGlia via NF-κB and AP-1. Co-regulation of COX-2 expression by S100B, IL-1β and TNF-α,” Neurobiology of Aging, vol. 31, no. 47, pp. 677–665, 2008. View at Publisher · View at Google Scholar · View at PubMed
  67. M. A. Hofmann, S. Drury, and S. Drury, “RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides,” Cell, vol. 97, no. 7, pp. 889–901, 1999. View at Publisher · View at Google Scholar
  68. H. J. Huttunen, J. Kuja-Panula, G. Sorci, A. L. Agneletti, R. Donato, and H. Rauvala, “Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation,” The Journal of Biological Chemistry, vol. 275, no. 51, pp. 40096–40105, 2000. View at Publisher · View at Google Scholar · View at PubMed
  69. G. Sorci, F. Riuzzi, A. L. Agneletti, C. Marchetti, and R. Donato, “S100B inhibits myogenic differentiation and myotube formation in a RAGE-independent manner,” Molecular and Cellular Biology, vol. 23, no. 14, pp. 4870–4881, 2003. View at Publisher · View at Google Scholar
  70. G. Sorci, F. Riuzzi, A. L. Agneletti, C. Marchetti, and R. Donato, “S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner,” Journal of Cellular Physiology, vol. 199, no. 2, pp. 274–283, 2004. View at Publisher · View at Google Scholar · View at PubMed
  71. F. Riuzzi, G. Sorci, and R. Donato, “S100B stimulates myoblast proliferation and inhibits myoblast differentiation by independently stimulating ERK1/2 and inhibiting p38 MAPK,” Journal of Cellular Physiology, vol. 207, no. 2, pp. 461–470, 2006. View at Publisher · View at Google Scholar · View at PubMed
  72. C. Adami, R. Bianchi, G. Pula, and R. Donato, “S100B-stimulated NO production by BV-2 microGlia is independent of RAGE transducing activity but dependent on RAGE extracellular domain,” Biochimica et Biophysica Acta, vol. 1742, no. 1–3, pp. 169–177, 2004. View at Publisher · View at Google Scholar · View at PubMed
  73. G. Esposito, D. De Filippis, C. Cirillo, G. Sarnelli, R. Cuomo, and T. Iuvone, “The astroGlial-derived S100β protein stimulates the expression of nitric oxide synthase in rodent macrophages through p38 MAP Kinase activation,” Life Sciences, vol. 78, no. 23, pp. 2707–2715, 2006. View at Publisher · View at Google Scholar · View at PubMed
  74. K. Omori, T. Ohira, and T. Ohira, “Priming of neutrophil oxidative burst in diabetes requires preassembly of the NADPH oxidase,” Journal of Leukocyte Biology, vol. 84, no. 1, pp. 292–301, 2008. View at Publisher · View at Google Scholar · View at PubMed
  75. R. Businaro, S. Leone, C. Fabrizi, G. Sorci, R. Donato, G. M. Lauro, and L. Fumagalli, “S100B protects LAN-5 neuroblastoma cells against Aβ amyloid-induced neurotoxicity via RAGE engagement at low doses but increases Aβ amyloid neurotoxicity at high doses,” Journal of Neuroscience Research, vol. 83, no. 5, pp. 897–906, 2006. View at Publisher · View at Google Scholar · View at PubMed
  76. L.-F. Lue, D. G. Walker, and D. G. Walker, “Involvement of microGlial receptor for advanced glycation endproducts (RAGE)in Alzheimer's disease: identification of a cellular activation mechanism,” Experimental Neurology, vol. 171, no. 1, pp. 29–45, 2001. View at Publisher · View at Google Scholar · View at PubMed
  77. A. M. Schmidt, S. D. Yan, S. F. Yan, and D. M. Stern, “The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses,” The Journal of Clinical Investigation, vol. 108, no. 7, pp. 949–955, 2001. View at Publisher · View at Google Scholar
  78. A. Bierhaus, P. M. Humpert, and P. M. Humpert, “Understanding RAGE, the receptor for advanced glycation end products,” Journal of Molecular Medicine, vol. 83, no. 11, pp. 876–886, 2005. View at Publisher · View at Google Scholar · View at PubMed
  79. J. Xie, S. Reverdatto, A. Frolov, R. Hoffmann, D. S. Burz, and A. Shekhtman, “Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE),” The Journal of Biological Chemistry, vol. 283, no. 40, pp. 27255–27269, 2008. View at Publisher · View at Google Scholar · View at PubMed
  80. I. Glezer, A. R. Simard, and S. Rivest, “Neuroprotective role of the innate immune system by microGlia,” Neuroscience, vol. 147, no. 4, pp. 867–883, 2007. View at Publisher · View at Google Scholar · View at PubMed
  81. U.-K. Hanisch and H. Kettenmann, “MicroGlia: active sensor and versatile effector cells in the normal and pathologic brain,” Nature Neuroscience, vol. 10, no. 11, pp. 1387–1394, 2007. View at Publisher · View at Google Scholar · View at PubMed
  82. M. S. Wainwright, J. M. Craft, W. S. T. Griffin, A. Marks, J. Pineda, K. R. Padgett, and L. J. Van Eldik, “Increased susceptibility of S100B transgenic mice to peinatal hypoxia-ischemia,” Annals of Neurology, vol. 56, no. 1, pp. 61–67, 2004. View at Publisher · View at Google Scholar · View at PubMed
  83. T. Mori, N. Koyama, G. W. Arendash, Y. Horikoshi-Sakuraba, J. Tan, and T. Town, “Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer's disease,” Glia, vol. 58, no. 3, pp. 300–314, 2010. View at Publisher · View at Google Scholar · View at PubMed
  84. S. H. Kim, C. J. Smith, and L. J. Van Eldik, “Importance of MAPK pathways for microGlial pro-inflammatory cytokine IL-1β production,” Neurobiology of Aging, vol. 25, no. 4, pp. 431–439, 2004. View at Publisher · View at Google Scholar · View at PubMed
  85. C. Reali, F. Scintu, R. Pillai, R. Donato, F. Michetti, and V. Sogos, “S100B counteracts effects of the neurotoxicant trimethyltin on astrocytes and microGlia,” Journal of Neuroscience Research, vol. 81, no. 5, pp. 677–686, 2005. View at Publisher · View at Google Scholar · View at PubMed
  86. A. M. Vincent, L. Perrone, K. A. Sullivan, C. Backus, A. M. Sastry, C. Lastoskie, and E. L. Feldman, “Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress,” Endocrinology, vol. 148, no. 2, pp. 548–558, 2007. View at Publisher · View at Google Scholar · View at PubMed
  87. G. Esposito, C. Scuderi, and C. Scuderi, “S100B induces tau protein hyperphosphorylation via Dickopff-1 up-regulation and disrupts the Wnt pathway in human neural stem cells,” Journal of Cellular and Molecular Medicine, vol. 12, no. 3, pp. 914–927, 2008. View at Publisher · View at Google Scholar · View at PubMed
  88. D. Xu and J. M. Kyriakis, “Phosphatidylinositol 3′-Kinase-dependent activation of renal mesangial cell Ki-Ras and ERK by advanced glycation end products,” The Journal of Biological Chemistry, vol. 278, no. 41, pp. 39349–39355, 2003. View at Publisher · View at Google Scholar · View at PubMed
  89. M. A. Reddy, S.-L. Li, S. Sahar, Y.-S. Kim, Z.-G. Xu, L. Lanting, and R. Natarajan, “Key role of Src Kinase in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells,” The Journal of Biological Chemistry, vol. 281, no. 19, pp. 13685–13693, 2006. View at Publisher · View at Google Scholar · View at PubMed
  90. B. I. Hudson, A. Z. Kalea, M. Del Mar Arriero, E. Harja, E. Boulanger, V. D'Agati, and A. M. Schmidt, “Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42,” The Journal of Biological Chemistry, vol. 283, no. 49, pp. 34457–34468, 2008. View at Publisher · View at Google Scholar · View at PubMed
  91. W. S. T. Griffin, O. Yeralan, and O. Yeralan, “Overexpression of the neurotrophic cytokine S100β in human temporal lobe epilepsy,” Journal of Neurochemistry, vol. 65, no. 1, pp. 228–233, 1995. View at Google Scholar
  92. S. Sakatani, A. Seto-Ohshima, Y. Shinohara, Y. Yamamoto, H. Yamamoto, S. Itohara, and H. Hirase, “Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gmma oscillations in vivo,” Journal of Neuroscience, vol. 28, no. 43, pp. 10928–10936, 2008. View at Publisher · View at Google Scholar · View at PubMed
  93. H. Kubista, R. Donato, and A. Hermann, “S100 calcium binding protein affects neuronal electrical discharge activity by modulation of potassium currents,” Neuroscience, vol. 90, no. 2, pp. 493–508, 1999. View at Publisher · View at Google Scholar
  94. M. Wiesmann, K. P. Wandinger, U. Missler, D. Eckhoff, M. Rothermundt, V. Arolt, and H. Kirchner, “Elevated plasma levels of S-100b protein in schizophrenic patients,” Biological Psychiatry, vol. 45, no. 11, pp. 1508–1511, 1999. View at Publisher · View at Google Scholar
  95. D. R. Lara, C. S. Gama, and C. S. Gama, “Increased serum S100B protein in schizophrenia: a study in medication-free patients,” Journal of Psychiatric Research, vol. 35, no. 1, pp. 11–14, 2001. View at Publisher · View at Google Scholar
  96. M. Rothermundt, U. Missler, and U. Missler, “Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology,” Molecular Psychiatry, vol. 6, no. 4, pp. 445–449, 2001. View at Publisher · View at Google Scholar · View at PubMed
  97. J. Steiner, M. Walter, and M. Walter, “A new pathophysiological aspect of S100B in schizophrenia: potential regulation of S100B by its scavenger soluble RAGE,” Biological Psychiatry, vol. 65, no. 12, pp. 1107–1110, 2009. View at Publisher · View at Google Scholar · View at PubMed
  98. M. Rothermundt, P. Ohrmann, and P. Ohrmann, “Glial cell activation in a subgroup of patients with schizophrenia indicated by increased S100B serum concentrations and elevated myo-inositol,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 31, no. 2, pp. 361–364, 2007. View at Publisher · View at Google Scholar · View at PubMed
  99. J. Steiner, H.-G. Bernstein, and H.-G. Bernstein, “S100B-immunopositive Glia is elevated in paranoid as compared to residual schizophrenia: a morphometric study,” Journal of Psychiatric Research, vol. 42, no. 10, pp. 868–876, 2008. View at Publisher · View at Google Scholar · View at PubMed
  100. J. Steiner, M. Walter, and M. Walter, “A new pathophysiological aspect of S100B in schizophrenia: potential regulation of S100B by its scavenger soluble RAGE,” Biological Psychiatry, vol. 65, no. 12, pp. 1107–1110, 2009. View at Publisher · View at Google Scholar · View at PubMed
  101. Ł. Drzyzga, E. Obuchowicz, A. Marcinowska, and Z. S. Herman, “Cytokines in schizophrenia and the effects of antipsychotic drugs,” Brain, Behavior, and Immunity, vol. 20, no. 6, pp. 532–545, 2006. View at Publisher · View at Google Scholar · View at PubMed
  102. S. Potvin, E. Stip, A. A. Sepehry, A. Gendron, R. Bah, and E. Kouassi, “Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review,” Biological Psychiatry, vol. 63, no. 8, pp. 801–808, 2008. View at Publisher · View at Google Scholar · View at PubMed
  103. N. Müller, “COX-2 inhibitors as antidepressants and antipsychotics: clinical evidence,” Current Opinion in Investigational Drugs, vol. 11, no. 1, pp. 31–42, 2010. View at Google Scholar
  104. R. Allore, D. O'Hanlon, and D. O'Hanlon, “Gene encoding the β subunit of S100 protein is on chromosome 21: implications for Down's syndrome,” Science, vol. 239, no. 4845, pp. 1311–1313, 1988. View at Google Scholar
  105. R. E. Mrak and W. S. T. Griffin, “Trisomy 21 and the brain,” Journal of Neuropathology and Experimental Neurology, vol. 63, no. 7, pp. 679–685, 2004. View at Google Scholar
  106. J. G. Sheng, R. E. Mrak, C. R. Rovnaghi, E. Kozlowska, L. J. Van Eldik, and W. S. T. Griffin, “Human brain S100β and S100β mRNA expression increases with age: pathogenic implications for Alzheimer's disease,” Neurobiology of Aging, vol. 17, no. 3, pp. 359–363, 1996. View at Publisher · View at Google Scholar
  107. J. Steiner, M. Walter, and M. Walter, “Elevated S100B levels in schizophrenia are associated with insulin resistance,” Molecular Psychiatry, vol. 15, no. 1, pp. 3–4, 2010. View at Publisher · View at Google Scholar · View at PubMed
  108. J. Steiner, K. Schiltz, and K. Schiltz, “S100B serum levels are closely correlated with body mass index: an important caveat in neuropsychiatric research,” Psychoneuroendocrinology, vol. 35, no. 2, pp. 321–324, 2010. View at Publisher · View at Google Scholar · View at PubMed
  109. J. Liu, Y. Shi, and Y. Shi, “SNPs and haplotypes in the S100B gene reveal association with schizophrenia,” Biochemical and Biophysical Research Communications, vol. 328, no. 1, pp. 335–341, 2005. View at Publisher · View at Google Scholar · View at PubMed
  110. S. Roche, F. Cassidy, and F. Cassidy, “Candidate gene analysis of 21q22: support for S100B as a susceptibility gene for bipolar affective disorder with psychosis,” American Journal of Medical Genetics Part B, vol. 144, no. 8, pp. 1094–1096, 2007. View at Publisher · View at Google Scholar · View at PubMed
  111. C. Hohoff, G. Ponath, and G. Ponath, “Risk variants in the S100B gene predict elevated S100B serum concentrations in healthy individuals,” American Journal of Medical Genetics Part B, vol. 153, no. 1, pp. 291–297, 2010. View at Publisher · View at Google Scholar · View at PubMed
  112. G. Poelmans, J. J. M. Engelen, and J. J. M. Engelen, “Identification of novel dyslexia candidate genes through the analysis of a chromosomal deletion,” American Journal of Medical Genetics Part B, vol. 150, no. 1, pp. 140–147, 2009. View at Publisher · View at Google Scholar · View at PubMed
  113. J. N. Tsoporis, S. Izhar, H. Leong-Poi, J.-F. Desjardins, H. J. Huttunen, and T. G. Parker, “S100B interaction with the receptor for advanced glycation end products (RAGE): a novel receptor-mediated mechanism for myocyte apoptosis postinfarction,” Circulation Research, vol. 106, no. 1, pp. 93–101, 2010. View at Publisher · View at Google Scholar · View at PubMed
  114. D. Foell, H. Wittkowski, and J. Roth, “Mechanisms of disease: a “DAMP” view of inflammatory arthritis,” Nature Clinical Practice Rheumatology, vol. 3, no. 7, pp. 382–390, 2007. View at Publisher · View at Google Scholar · View at PubMed
  115. Y. L. Su, M. J. Raftery, J. Goyette, K. Hsu, and C. L. Geczy, “Oxidative modifications of S100 proteins: functional regulation by redox,” Journal of Leukocyte Biology, vol. 86, no. 3, pp. 577–587, 2009. View at Publisher · View at Google Scholar · View at PubMed
  116. L. V. C. Portela, A. B. L. Tort, and A. B. L. Tort, “The serum S100B concentration is age dependent,” Clinical Chemistry, vol. 48, no. 6, pp. 950–952, 2002. View at Google Scholar
  117. B. Ahlemeyer, H. Beier, I. Semkova, C. Schaper, and J. Krieglstein, “S-100β protects cultured neurons against glutamate- and staurosporine-induced damage and is involved in the antiapoptotic action of the 5 HT1A-receptor agonist, Bay x 3702,” Brain Research, vol. 858, no. 1, pp. 121–128, 2000. View at Google Scholar
  118. D. Kögel, M. Peters, and M. Peters, “S100B potently activates p65/c-Rel transcriptional complexes in hippocampal neurons: clinical implications for the role of S100B in excitotoxic brain injury,” Neuroscience, vol. 127, no. 4, pp. 913–920, 2004. View at Publisher · View at Google Scholar · View at PubMed
  119. P. Pichiule, J. C. Chavez, A. M. Schmidt, and S. J. Vannucci, “Hypoxia-inducible factor-1 mediates neuronal expression of the receptor for advanced glycation end products following hypoxia/ischemia,” The Journal of Biological Chemistry, vol. 282, no. 50, pp. 36330–36340, 2007. View at Publisher · View at Google Scholar · View at PubMed
  120. F. Winningham-Major, J. L. Staecker, S. W. Barger, S. Coats, and L. J. Van Eldik, “Neurite extension and neuronal survival activities of recombinant S100β proteins that differ in the content and position of cysteine residues,” Journal of Cell Biology, vol. 109, no. 6 I, pp. 3063–3071, 1989. View at Publisher · View at Google Scholar
  121. K. G. Haglid, Q. Yang, A. Hamberger, S. Bergman, A. Widerberg, and N. Danielsen, “S-100β stimulates neurite outgrowth in the rat sciatic nerve grafted with acellular muscle transplants,” Brain Research, vol. 753, no. 2, pp. 196–201, 1997. View at Publisher · View at Google Scholar
  122. L. J. Van Eldik, B. Christie-Pope, L. M. Bolin, E. M. Shooter, and W. O. Whetsell Jr., “Neurotrophic activity of S-100β in cultures of dorsal root ganGlia from embryonic chick and fetal rat,” Brain Research, vol. 542, no. 2, pp. 280–285, 1991. View at Publisher · View at Google Scholar
  123. A. Bhattacharyya, R. W. Oppenheim, D. Prevette, B. W. Moore, R. Brackenbury, and N. Ratner, “S100 is present in developing chicken neurons and Schwann cells and promotes motor neuron survival in vivo,” Journal of Neurobiology, vol. 23, no. 4, pp. 451–466, 1992. View at Publisher · View at Google Scholar · View at PubMed
  124. M. Nishi, P. M. Whitaker-Azmitia, and E. C. Azmitia, “Enhanced synaptophysin immunoreactivity in rat hippocampal culture by 5-HT1A agonist, S100b, and corticosteroid receptor agonists,” Synapse, vol. 23, no. 1, pp. 1–9, 1996. View at Google Scholar
  125. S. Ueda, E. T. K. Leonardi, J. Bell III, and E. C. Azmitia, “Serotonergic sprouting into transplanted C-6 gliomas is blocked by S-100β antisense gene,” Molecular Brain Research, vol. 29, no. 2, pp. 365–368, 1995. View at Publisher · View at Google Scholar
  126. R. H. Selinfreund, S. W. Barger, W. J. Pledger, and L. J. Van Eldik, “Neurotrophic protein S100β stimulates Glial cell proliferation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 9, pp. 3554–3558, 1991. View at Google Scholar
  127. A. Kleindienst, M. J. McGinn, H. B. Harvey, R. J. Colello, R. J. Hamm, and M. R. Bullock, “Enhanced hippocampal neurogenesis by intraventricular S100B infusion is associated with improved cognitive recovery after traumatic brain injury,” Journal of Neurotrauma, vol. 22, no. 6, pp. 645–655, 2005. View at Publisher · View at Google Scholar · View at PubMed
  128. A. Kleindienst and M. R. Bullock, “A critical analysis of the role of the neurotrophic protein S100B in acute brain injury,” Journal of Neurotrauma, vol. 23, no. 8, pp. 1185–1200, 2006. View at Publisher · View at Google Scholar · View at PubMed
  129. E. F. Ellis, K. A. Willoughby, S. A. Sparks, and T. Chen, “S100B protein is released from rat neonatal neurons, astrocytes, and microGlia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons,” Journal of Neurochemistry, vol. 101, no. 6, pp. 1463–1470, 2007. View at Publisher · View at Google Scholar · View at PubMed
  130. K. A. Willoughby, A. Kleindienst, C. Müller, T. Chen, J. K. Muir, and E. F. Ellis, “S100B protein is released by in vitro trauma and reduces delayed neuronal injury,” Journal of Neurochemistry, vol. 91, no. 6, pp. 1284–1291, 2004. View at Publisher · View at Google Scholar · View at PubMed
  131. A. J. Ramos, M. D. Rubio, C. Defagot, L. Hischberg, M. J. Villar, and A. Brusco, “The 5HT1A receptor agonist, 8-OH-DPAT, protects neurons and reduces astroglial reaction after ischemic damage caused by cortical devascularization,” Brain Research, vol. 1030, no. 2, pp. 201–220, 2004. View at Publisher · View at Google Scholar · View at PubMed
  132. F. Tramontina, A. C. Tramontina, and A. C. Tramontina, “Glutamate uptake is stimulated by extracellular S100B in hippocampal astrocytes,” Cellular and Molecular Neurobiology, vol. 26, no. 1, pp. 81–86, 2006. View at Publisher · View at Google Scholar · View at PubMed
  133. K. R. L. Schmitt, C. Kern, P. E. Lange, F. Berger, H. Abdul-Khaliq, and S. Hendrix, “S100B modulates IL-6 release and cytotoxicity from hypothermic brain cells and inhibits hypothermia-induced axonal outgrowth,” Neuroscience Research, vol. 59, no. 1, pp. 68–73, 2007. View at Publisher · View at Google Scholar · View at PubMed
  134. H. Manev, T. Uz, and R. Manev, “Glia as a putative target for antidepressant treatments,” Journal of Affective Disorders, vol. 75, no. 1, pp. 59–64, 2003. View at Publisher · View at Google Scholar
  135. S. B. P. Chargé and M. A. Rudnicki, “Cellular and molecular regulation of muscle regeneration,” Physiological Reviews, vol. 84, no. 1, pp. 209–238, 2004. View at Publisher · View at Google Scholar · View at PubMed
  136. H. Rauvala and A. Rouhiainen, “Physiological and pathophysiological outcomes of the interactions of HMGB1 with cell surface receptors,” Biochimica et Biophysica Acta, vol. 1799, no. 1-2, pp. 164–170, 2010. View at Publisher · View at Google Scholar · View at PubMed
  137. G. Sorci, F. Riuzzi, C. Arcuri, I. Giambanco, and R. Donato, “Amphoterin stimulates myogenesis and counteracts the antimyogenic factors basic fibroblast growth factor and S100B via RAGE binding,” Molecular and Cellular Biology, vol. 24, no. 11, pp. 4880–4894, 2004. View at Publisher · View at Google Scholar · View at PubMed
  138. F. Riuzzi, G. Sorci, and R. Donato, “The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness: functional inactivation of RAGE in l6 myoblasts results in tumor formation in vivo,” The Journal of Biological Chemistry, vol. 281, no. 12, pp. 8242–8253, 2006. View at Publisher · View at Google Scholar · View at PubMed
  139. F. Riuzzi, G. Sorci, and R. Donato, “RAGE expression in rhabdomyosarcoma cells results in myogenic differentiation and reduced proliferation, migration, invasiveness, and tumor growth,” American Journal of Pathology, vol. 171, no. 3, pp. 947–961, 2007. View at Publisher · View at Google Scholar · View at PubMed
  140. R. Gerlai and J. Roder, “Spatial and nonspatial learning in mice: effects of S100β overexpression and age,” Neurobiology of Learning and Memory, vol. 66, no. 2, pp. 143–154, 1996. View at Publisher · View at Google Scholar · View at PubMed
  141. H. Nishiyama, T. Knöpfel, S. Endo, and S. Itohara, “Glial protein S100B modulates long-term neuronal synaptic plasticity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 4037–4042, 2002. View at Publisher · View at Google Scholar · View at PubMed
  142. S. Sakatani, K. Yamada, C. Homma, S. Munesue, Y. Yamamoto, H. Yamamoto, and H. Hirase, “Deletion of RAGE causes hyperactivity and increased sensitivity to auditory stimuli in mice,” PloS One, vol. 4, no. 12, Article ID e8309, 2009. View at Google Scholar