Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2010 (2010), Article ID 720958, 6 pages
http://dx.doi.org/10.1155/2010/720958
Research Article

A Comparison of the Dynamics of S100B, S100A1, and S100A6 mRNA Expression in Hippocampal CA1 Area of Rats during Long-Term Potentiation and after Low-Frequency Stimulation

1Institute for Molecular Biology and Biophysics, Siberian Branch of the Russian Academy of Medical Sciences, 2 Timakova Street, Novosibirsk 630117, Russia
2Laboratory of Biomedical Informatics, Design Technological Institute of Digital Techniques, Siberian Branch of The Russian Academy of Sciences, 6 Institutskaya ul., Novosibirsk 630090, Russia
3Research Division, OOO NPF Materia Medica Holding, 9 3rd Samotyochnyi per., Moscow 127473, Russia

Received 1 March 2010; Revised 27 April 2010; Accepted 17 August 2010

Academic Editor: Rosario Donato

Copyright © 2010 Pavel D. Lisachev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Donato, “Intracellular and extracellular roles of S100 proteins,” Microscopy Research and Technique, vol. 60, no. 6, pp. 540–551, 2003. View at Google Scholar · View at Scopus
  2. N. Yamashita, E. C. Ilg, B. W. Schäfer, C. W. Heizmann, and T. Kosaka, “Distribution of a specific calcium-binding protein of the S100 protein family, S100A6 (calcyclin), in subpopulations of neurons and glial cells of the adult rat nervous system,” Journal of Comparative Neurology, vol. 404, no. 2, pp. 235–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Hachem, A. Aguirre, V. Vives, A. Marks, V. Gallo, and C. Legraverend, “Spatial and temporal expression of S100B in cells of oligodendrocyte lineage,” Glia, vol. 51, no. 2, pp. 81–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Gerlach, G. Demel, H.-G. König et al., “Active secretion of S100B from astrocytes during metabolic stress,” Neuroscience, vol. 141, no. 4, pp. 1697–1701, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Steiner, H.-G. Bernstein, H. Bielau et al., “Evidence for a wide extra-astrocytic distribution of S100B in human brain,” BMC Neuroscience, vol. 8, article no. 2, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Lin, M. Blake, C. Tang et al., “Inhibition of p53 transcriptional activity by the S100B calcium-binding protein,” Journal of Biological Chemistry, vol. 276, no. 37, pp. 35037–35041, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. N. T. Wright, B. R. Cannon, D. B. Zimmer, and D. J. Weber, “S100A1: structure, function, and therapeutic potential,” Current Chemical Biology, vol. 3, no. 2, pp. 138–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Rebaudo, R. Melani, M. Balestrino, A. Cupello, K. Haglid, and H. Hydèn, “Antiserum against S-100 protein prevents long term potentiation through a cAMP-related mechanism,” Neurochemical Research, vol. 25, no. 4, pp. 541–545, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Gerlai, J. M. Wojtowicz, A. Marks, and J. Roder, “Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice,” Learning & Memory, vol. 2, no. 1, pp. 26–39, 1995. View at Google Scholar · View at Scopus
  10. H. Nishiyama, T. Knöpfel, S. Endo, and S. Itohara, “Glial protein S100B modulates long-term neuronal synaptic plasticity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 4037–4042, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. S. C. Tiu, W. Y. Chan, C. W. Heizmann, B. W. Schäfer, S. Y. Shu, and D. T. Yew, “Differential expression of S100B and S100A6 in the human fetal and aged cerebral cortex,” Developmental Brain Research, vol. 119, no. 2, pp. 159–168, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Rothermundt, M. Peters, J. H. Prehn, and V. Arolt, “S100B in brain damage and neurodegeneration,” Microscopy Research and Technique, vol. 60, no. 6, pp. 614–632, 2003. View at Google Scholar · View at Scopus
  13. D. Hoyaux, A. Boom, L. Van Den Bosch et al., “S100A6 overexpression within astrocytes associated with impaired axons from both ALS mouse model and human patients,” Journal of Neuropathology and Experimental Neurology, vol. 61, no. 8, pp. 736–744, 2002. View at Google Scholar · View at Scopus
  14. A. Boom, R. Pochet, M. Authelet et al., “Astrocytic calcium/zinc binding protein S100A6 over expression in Alzheimer's disease and in PS1/APP transgenic mice models,” Biochimica et Biophysica Acta, vol. 1742, no. 1–3, pp. 161–168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. G. E. Ackermann, I. Marenholz, D. P. Wolfer et al., “S100A1-deficient male mice exhibit increased exploratory activity and reduced anxiety-related responses,” Biochimica et Biophysica Acta, vol. 1763, no. 11, pp. 1307–1319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. A. McClung and E. J. Nestler, “Neuroplasticity mediated by altered gene expression,” Neuropsychopharmacology, vol. 33, no. 1, pp. 3–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Alberini, “Transcription factors in long-term memory and synaptic plasticity,” Physiological Reviews, vol. 89, no. 1, pp. 121–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. J. Hong, H. Li, K. G. Becker, V. L. Dawson, and T. M. Dawson, “Identification and analysis of plasticity-induced late-response genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 7, pp. 2145–2150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. P. Chang, R. Gong, J. Stuart, and S.-J. Tang, “Molecular network and chromosomal clustering of genes involved in synaptic plasticity in the hippocampus,” Journal of Biological Chemistry, vol. 281, no. 40, pp. 30195–30211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Santello and A. Volterra, “Synaptic modulation by astrocytes via Ca2+-dependent glutamate release,” Neuroscience, vol. 158, no. 1, pp. 253–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Djalali, M. Höltje, G. Große et al., “Effects of brain-derived neurotrophic factor (BDNF) on glial cells and serotonergic neurones during development,” Journal of Neurochemistry, vol. 92, no. 3, pp. 616–627, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Lu, K. Christian, and B. Lu, “BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory?” Neurobiology of Learning and Memory, vol. 89, no. 3, pp. 312–323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Donato, G. Sorci, F. Riuzzi et al., “S100B's double life: intracellular regulator and extracellular signal,” Biochimica et Biophysica Acta, vol. 1793, no. 6, pp. 1008–1022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. W. Barger and L. J. Van Eldik, “S100β stimulates calcium fluxes in glial and neuronal cells,” Journal of Biological Chemistry, vol. 267, no. 14, pp. 9689–9694, 1992. View at Google Scholar · View at Scopus
  25. S. Sakatani, A. Seto-Ohshima, Y. Shinohara et al., “Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gmma oscillations in vivo,” Journal of Neuroscience, vol. 28, no. 43, pp. 10928–10936, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. L. Jankowsky, B. E. Derrick, and P. H. Patterson, “Cytokine responses to LTP induction in the rat hippocampus: a comparison of in vitro and in vivo techniques,” Learning and Memory, vol. 7, no. 6, pp. 400–412, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. A. N. Chepkova, N. V. Doreuli, R. U. Ostrovskaia, T. A. Gudasheva, and V. G. Skrebitskiĭ, “Preservation of plastic properties of synaptic transmission in long-lasting hippocampal slices under the effects of a peptide analog of piracetam, L-pGlu-D-Ala-NH2,” Biulleten' Eksperimental'noĭ Biologii i Meditsiny, vol. 110, no. 12, pp. 602–604, 1990. View at Google Scholar
  28. F. Benfenati, R. Ferrari, F. Onofri, C. Arcuri, I. Giambanco, and R. Donato, “S100A1 codistributes with synapsin I in discrete brain areas and inhibits the F-actin-bundling activity of synapsin I,” Journal of Neurochemistry, vol. 89, no. 5, pp. 1260–1270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. H. J. Huttunen, J. Kuja-Panula, G. Sorci, A. L. Agneletti, R. Donato, and H. Rauvala, “Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation,” Journal of Biological Chemistry, vol. 275, no. 51, pp. 40096–40105, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. H. J. Huttunen, J. Kuja-Panula, and H. Rauvala, “Receptor for advanced glycation end products (RAGE) signaling induces CREB-dependent chromogranin expression during neuronal differentiation,” Journal of Biological Chemistry, vol. 277, no. 41, pp. 38635–38646, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Leclerc, G. Fritz, S. W. Vetter, and C. W. Heizmann, “Binding of S100 proteins to RAGE: an update,” Biochimica et Biophysica Acta, vol. 1793, no. 6, pp. 993–1007, 2009. View at Publisher · View at Google Scholar · View at Scopus