Table of Contents
Chromatography Research International
Volume 2012 (2012), Article ID 135854, 9 pages
http://dx.doi.org/10.1155/2012/135854
Research Article

Ion Suppression Study for Tetracyclines in Feed

1Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
2RIKILT-Institute of Food Safety, Wageningen University and Research Center, Akkermaalsbos 2, 6708 WB, P.O. Box 230, 6700AE Wageningen, The Netherlands

Received 13 June 2012; Accepted 8 August 2012

Academic Editor: Andrew Cannavan

Copyright © 2012 Joaquim Chico et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Oka, Y. Ito, and H. Matsumoto, “Chromatographic analysis of tetracycline antibiotics in foods,” Journal of Chromatography A, vol. 882, no. 1-2, pp. 109–133, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. C. R. Anderson, H. S. Rupp, and W. H. Wu, “Complexities in tetracycline analysis—chemistry, matrix extraction, cleanup, and liquid chromatography,” Journal of Chromatography A, vol. 1075, no. 1-2, pp. 23–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. Commission Decision. Regulation (EC) No 882/2004 of the European Parliament and of the Council of 29 April 2004 on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules, 2004.
  4. Regulation. Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition, 2003.
  5. Council Directive 90/167/EEC. Council Directive 90/167/EEC of 26 March 1990 laying down the conditions governing the preparation, placing on the market and use of medicated feedingstuffs in the Community, 1990.
  6. Commision Recommendation 2005/925/EC of 14 December 2005 on the coordinated inspection programme in the field of animal nutrition for the year 2006 in accordance with Council Directive 95/53/EC.
  7. J. D. G. McEvoy, “Contamination of animal feedingstuffs as a cause of residues in food: a review of regulatory aspects, incidence and control,” Analytica Chimica Acta, vol. 473, no. 1-2, pp. 3–26, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. L. L. Jessome and D. A. Volmer, “Ion suppression: a major concern in mass spectrometry,” LC-GC North America, vol. 24, no. 5, pp. 498–510, 2006. View at Google Scholar · View at Scopus
  9. T. M. Annesley, “Ion suppression in mass spectrometry,” Clinical Chemistry, vol. 49, no. 7, pp. 1041–1044, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Antignac, K. De Wasch, F. Monteau, H. De Brabander, F. Andre, and B. Le Bizec, “The ion suppression phenomenon in liquid chromatography-mass spectrometry and its consequences in the field of residue analysis,” Analytica Chimica Acta, vol. 529, no. 1-2, pp. 129–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Hsieh, M. Chintala, H. Mei et al., “Quantitative screening and matrix effect studies of drug discovery compounds in monkey plasma using fastgradient liquid chromatography/tandem mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 15, no. 24, pp. 2481–2487, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. B. K. Matuszewski, M. L. Constanzer, and C. M. Chavez-Eng, “Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS,” Analytical Chemistry, vol. 75, no. 13, pp. 3019–3030, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Müller, P. Schäfer, M. Störtzel, S. Vogt, and W. Weinmann, “Ion suppression effects in liquid chromatography-electrospray-ionisation transport-region collision induced dissociation mass spectrometry with different serum extraction methods for systematic toxicological analysis with mass spectra libraries,” Journal of Chromatography B, vol. 773, no. 1, pp. 47–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Bonfiglio, R. C. King, T. V. Olah, and K. Merkle, “The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds,” Rapid Communications in Mass Spectrometry, vol. 13, no. 12, pp. 1175–1185, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. C. R. Mallet, Z. Lu, and J. R. Mazzeo, “A study of ion suppression effects in electrospray ionization from mobile phase additives and solid-phase extracts,” Rapid Communications in Mass Spectrometry, vol. 18, no. 1, pp. 49–58, 2004. View at Google Scholar · View at Scopus
  16. J. X. Shen, R. J. Motyka, J. P. Roach, and R. N. Hayes, “Minimization of ion suppression in LC-MS/MS analysis through the application of strong cation exchange solid-phase extraction (SCX-SPE),” Journal of Pharmaceutical and Biomedical Analysis, vol. 37, no. 2, pp. 359–367, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Holčapek, K. Volná, P. Jandera et al., “Effects of ion-pairing reagents on the electrospray signal suppression of sulphonated dyes and intermediates,” Journal of Mass Spectrometry, vol. 39, no. 1, pp. 43–50, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Chambers, D. M. Wagrowski-Diehl, Z. Lu, and J. R. Mazzeo, “Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses,” Journal of Chromatography B, vol. 852, no. 1-2, pp. 22–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. G. J. Mol, P. Plaza-Bolaños, P. Zomer, T. C. De Rijk, A. A. M. Stolker, and P. P. J. Mulder, “Toward a generic extraction method for simultaneous determination of pesticides, mycotoxins, plant toxins, and veterinary drugs in feed and food matrixes,” Analytical Chemistry, vol. 80, no. 24, pp. 9450–9459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Lindegardh, A. Annerberg, N. J. White, and N. P. J. Day, “Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma. Stable isotope labeled internal standard does not always compensate for matrix effects,” Journal of Chromatography B, vol. 862, no. 1-2, pp. 227–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Kantiani, M. Farré, J. M. Grases I Freixiedas, and D. Barceló, “Determination of antibacterials in animal feed by pressurized liquid extraction followed by online purification and liquid chromatography- electrospray tandem mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 398, no. 3, pp. 1195–1205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Van Holthoon, P. P. J. Mulder, E. O. Van Bennekom, H. Heskamp, T. Zuidema, and H. J. A. Van Rhijn, “Quantitative analysis of penicillins in porcine tissues, milk and animal feed using derivatisation with piperidine and stable isotope dilution liquid chromatography tandem mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 396, no. 8, pp. 3027–3040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. G. de la Huebra, U. Vincent, and C. von Holst, “Determination of semduramicin in poultry feed at authorized level by liquid chromatography single quadrupole mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 4, pp. 860–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. U. Vincent, Z. Ezerskis, M. Chedin, and C. von Holst, “Determination of ionophore coccidiostats in feeding stuffs by liquid chromatography-tandem mass spectrometry. Part II. Application to cross-contamination levels and non-targeted feed,” Journal of Pharmaceutical and Biomedical Analysis, vol. 54, no. 3, pp. 526–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Cronly, P. Behan, B. Foley, E. Malone, P. Shearan, and L. Regan, “Determination of eleven coccidiostats in animal feed by liquid chromatography-tandem mass spectrometry at cross contamination levels,” Analytica Chimica Acta, vol. 700, no. 1-2, pp. 26–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Liu, W. Hei, P. He, and Z. Li, “Simultaneous determination of fifteen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry,” Journal of Chromatography B, vol. 879, no. 24, pp. 2416–2422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Li, T. J. Herrman, and S. Y. Dai, “Determination of aflatoxins in animal feeds by liquid chromatography/tandem mass spectrometry with isotope dilution,” Rapid Communications in Mass Spectrometry, vol. 25, no. 9, pp. 1222–1230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Delahaut, G. Pierret, N. Ralet, M. Dubois, and N. Gillard, “Multi-residue method for detecting coccidiostats at carry-over level in feed by HPLC-MS/MS,” Food Additives and Contaminants—Part A, vol. 27, no. 6, pp. 801–809, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Van Poucke, F. Dumoulin, and C. Van Peteghem, “Detection of banned antibacterial growth promoters in animal feed by liquid chromatography-tandem mass spectrometry: optimisation of the extraction solvent by experimental design,” Analytica Chimica Acta, vol. 529, no. 1-2, pp. 211–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Van Poucke, K. De Keyser, A. Baltusnikiene, J. D. G. McEvoy, and C. Van Peteghem, “Liquid chromatographic-tandem mass spectrometric detection of banned antibacterial growth promoters in animal feed,” Analytica Chimica Acta, vol. 483, no. 1-2, pp. 99–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. S. O'Connor, J. Locke, and D. S. Aga, “Addressing the challenges of tetracycline analysis in soil: extraction, clean-up, and matrix effects in LC-MS,” Journal of Environmental Monitoring, vol. 9, no. 11, pp. 1254–1262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Lavén, T. Alsberg, Y. Yu, M. Adolfsson-Erici, and H. Sun, “Serial mixed-mode cation- and anion-exchange solid-phase extraction for separation of basic, neutral and acidic pharmaceuticals in wastewater and analysis by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry,” Journal of Chromatography A, vol. 1216, no. 1, pp. 49–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Tölgyesi, L. Tölgyesi, V. K. Sharma, M. Sohn, and J. Fekete, “Quantitative determination of corticosteroids in bovine milk using mixed-mode polymeric strong cation exchange solid-phase extraction and liquid chromatography-tandem mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 4, pp. 919–928, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. R. Baker and B. Kasprzyk-Hordern, “Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography-positive electrospray ionisation tandem mass spectrometry,” Journal of Chromatography A, vol. 1218, no. 12, pp. 1620–1631, 2011. View at Publisher · View at Google Scholar · View at Scopus