Table of Contents
Chromatography Research International
Volume 2012, Article ID 870951, 9 pages
http://dx.doi.org/10.1155/2012/870951
Research Article

A Stability Indicating UPLC Method for the Determination of Tramadol Hydrochloride: Application to Pharmaceutical Analysis

Department of Chemistry, University of Mysore, Manasagangothri, Karnataka, Mysore 570 006, India

Received 28 February 2012; Accepted 28 March 2012

Academic Editor: Antonio Martín-Esteban

Copyright © 2012 Kanakapura B. Vinay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The use of Ultra Performance Liquid Chromatography (UPLC), with a rapid 5-minute reversed phase isocratic separation on a 1.7 μm reversed-phase packing material to provide rapid ‘‘high throughput’’ support for tramadol hydrochloride (TMH) is demonstrated. A simple, precise and accurate stability-indicating isocratic UPLC method was developed for the determination of TMH in bulk drug and in its tablets. The method was developed using Waters Aquity BEH C18 column (100 mm × 2.1 mm, 1.7 μm) with mobile phase consisting of a mixture of potassium dihydrogen phosphate buffer of pH 2.8 and an equal volume of acetonitrile (60 : 40 v/v). The eluted compound was detected at 226 nm with a UV detector. The standard curve of mean peak area versus concentration showed an excellent linearity over a concentration range 0.5–300 μg mL−1 TMH with regression coefficient (r) value of 0.9999. The limit of detection (S/N =3) was 0.08 μg mL−1 and the limit of quantification (S/N =10) was 0.2 μg mL−1. Forced degradation of the bulk sample was conducted an accordance with the ICH guidelines. Acidic, basic, hydrolytic, oxidative, thermal and photolytic degradation were used to assess the stability indicating power of the method. TMH was found to degrade significantly in acidic, basic and oxidative stress conditions and stable in thermal, hydrolytic and photolytic conditions.