Table of Contents
Chromatography Research International
Volume 2013 (2013), Article ID 524806, 5 pages
http://dx.doi.org/10.1155/2013/524806
Research Article

Quantification of Amiridine in Human Plasma by High-Performance Liquid Chromatography Coupled with Electrospray Tandem Mass Spectrometry

Mental Health Research Center of RAMS, Moscow 115522, Russia

Received 9 April 2013; Revised 3 July 2013; Accepted 17 July 2013

Academic Editor: Irene Panderi

Copyright © 2013 Igor I. Miroshnichenko and Angelina I. Platova. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Kidd, “Alzheimer's disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention,” Alternative Medicine Review, vol. 13, no. 2, pp. 85–115, 2008. View at Google Scholar · View at Scopus
  2. H. W. Querfurth and F. M. LaFerla, “Alzheimer's disease,” New England Journal of Medicine, vol. 362, no. 4, pp. 329–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. T. Beier, “Treatment strategies for the behavioral symptoms of Alzheimer's disease: focus on early pharmacologic intervention,” Pharmacotherapy, vol. 27, no. 3, pp. 399–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Burov, L. Cadysheva, T. Rodakidze, E. Peganov, A. Voronin, and H. Parvez, “Pharmacological effects of amiridin,” European Journal of Pharmacology, vol. 183, no. 4, p. 1464, 1990. View at Google Scholar · View at Scopus
  5. J. Kojima, K. Onodera, M. Ozeki, and K. Nakayama, “Ipidacrine (NIK-247): a review of multiple mechanisms as an antidementia agent,” CNS Drug Reviews, vol. 4, no. 3, pp. 247–259, 1998. View at Google Scholar · View at Scopus
  6. R. A. De Aquino, L. V. Modolo, R. B. Alves, and A. de Fátima, “Design of new drugs for the treatment of Alzheimers disease based on tacrine structure,” Curr Drug Targets, vol. 14, no. 3, pp. 378–397, 2013. View at Google Scholar
  7. I. V. Damulin, D. A. Stepkina, and A. B. Lokshina, “Neyromidin in mixed vascular and Alzheimer's dementia,” Zhurnal Nevrologii i Psihiatrii imeni S.S. Korsakova, vol. 111, no. 2, pp. 40–43, 2011. View at Google Scholar · View at Scopus
  8. I. Miroshnichenko, Neurochemical and pharmacokinetic aspects of mechanism of action for drugs with nootropic and antiamnestic activities [Ph.D. thesis], 1995, Doctor of Science and Pharmacology.
  9. M. Niwa, “Chemical derivatization as a tool for optimizing MS response in sensitive LC-MS/MS bioanalysis and its role in pharmacokinetic studies,” Bioanalysis, vol. 4, no. 2, pp. 213–220, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Li, Y. Hua, L. W. Ming et al., “Selective and sensitive determination of bis(7)-tacrine, a high erythrocyte binding acetylcholinesterase inhibitor, in rat plasma by high-performance liquid chromatography-tandem mass spectrometry,” Biomedical Chromatography, vol. 22, no. 4, pp. 414–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Meadows, T. Liddicoat, and M. Oliver, “Revolutionizing SPE for improved bioanalysis,” Bioanalysis, vol. 4, no. 22, pp. 2661–2663, 2012. View at Publisher · View at Google Scholar
  12. F. T. Peters, O. H. Drummer, and F. Musshoff, “Validation of new methods,” Forensic Science International, vol. 165, no. 2-3, pp. 216–224, 2007. View at Publisher · View at Google Scholar · View at Scopus