Table of Contents
Chromatography Research International
Volume 2013, Article ID 676501, 9 pages
Research Article

Implementation of QbD Approach to the Analytical Method Development and Validation for the Estimation of Propafenone Hydrochloride in Tablet Dosage Form

Pharmaceutical Chemistry Department, M.G.V’s Pharmacy College, Panchavati, Nashik 422003, India

Received 9 January 2013; Accepted 26 February 2013

Academic Editor: Irene Panderi

Copyright © 2013 Monika L. Jadhav and Santosh R. Tambe. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Chromatographic and spectrophotometric methods were developed according to Quality by Design (QbD) approach as per ICH Q8(R2) guidelines for estimation of propafenone hydrochloride in tablet dosage form. QbD approach was carried out by varying various parameters and these variable parameters were designed into Ishikawa diagram. The critical parameters were determined by using principal component analysis as well as by observation. Estimated critical parameters in HPTLC method include solvent methanol, mode of detection absorbance, precoated aluminium backed TLC plate (10 cm 10 cm), wavelength: 250 nm, saturation time: 20 min, band length: 8 mm, solvent front: 70 mm, volume of mobile phase: 5 mL, type of chamber: 10 cm 10 cm, scanning time: 10 min, and mobile phase methanol : ethyl acetate : triethylamine (1.5 : 3.5 : 0.4 v/v/v). Estimated critical parameters in zero order spectrophotometric method were solvent methanol, sample preparation tablet, wavelength: 247.4 nm, slit width: 1.0, scan speed medium, and sampling interval: 0.2, and for first order derivative spectrophotometric method it was scaling factor: 5 and delta lambda 4. The above methods were validated according to ICH Q2(R1) guidelines. Proposed methods can be used for routine analysis of propafenone hydrochloride in tablet dosage form as they were found to be robust and specific.