Table of Contents Author Guidelines Submit a Manuscript
Case Reports in Hematology
Volume 2012 (2012), Article ID 723204, 3 pages
http://dx.doi.org/10.1155/2012/723204
Case Report

Prekallikrein Deficiency Presenting as Recurrent Cerebrovascular Accident: Case Report and Review of the Literature

Division of Hematology and Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave Suite 3300, Miami, FL 33136, USA

Received 12 June 2012; Accepted 24 July 2012

Academic Editors: S. Aref, E. Arellano-Rodrigo, and K. Konstantopoulos

Copyright © 2012 Esteban Uribe Bojanini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Girolami, P. Scarparo, N. Candeo, and A. M. Lombardi, “Congenital prekallikrein deficiency,” Expert Review of Hematology, vol. 3, no. 6, pp. 685–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Girolami, S. Marun, S. Vettore et al., “A large family from Argentina with Prekallikrein deficiency due to a compound heterozygosis (T insertion in intron 7 and Asp558Glu in exon 15): prekallikrein Cordoba,” American Journal of Hematology, vol. 85, no. 5, pp. 363–366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. H. L. Meier, J. V. Pierce, R. W. Colman, and A. P. Kaplan, “Activation and function of human Hageman factor. The role of high molecular weight kininogen and prekallikrein,” Journal of Clinical Investigation, vol. 60, no. 1, pp. 18–31, 1977. View at Google Scholar · View at Scopus
  4. L. M. Asmis, I. Sulzer, M. Furlan, and B. Lämmle, “Prekallikrein deficiency: the characteristic normalization of the severely prolonged aPTT following increased preincubation time is due to autoactivation of factor XII,” Thrombosis Research, vol. 105, no. 6, pp. 463–470, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Tang, C. L. Yu, S. R. Williams et al., “Expression, crystallization, and three-dimensional structure of the catalytic domain of human plasma kallikrein,” Journal of Biological Chemistry, vol. 280, no. 49, pp. 41077–41089, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. W. E. Hathaway, L. P. Belhasen, and H. S. Hathaway, “Evidence for a new plasma thromboplastin factor. I. Case report, coagulation studies and physicochemical properties,” Blood, vol. 26, no. 5, pp. 521–532, 1965. View at Google Scholar · View at Scopus
  7. K. D. Wuepper, “Prekallikrein deficiency in man,” Journal of Experimental Medicine, vol. 138, no. 6, pp. 1345–1355, 1973. View at Google Scholar · View at Scopus
  8. J. W. Bryant and Z. Shariat-Madar, “Human plasma kallikrein-kinin system: physiological and biochemical parameters,” Cardiovascular and Hematological Agents in Medicinal Chemistry, vol. 7, no. 3, pp. 234–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Nakao, T. Yamane, T. Katagami et al., “Severe prekallikrein deficiency due to a homozygous Trp499Stop nonsense mutation,” Blood Coagulation and Fibrinolysis, vol. 22, no. 4, pp. 337–339, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Girolami, E. Allemand, I. Bertozzi, N. Candeo, S. Marun, and B. Girolami, “Thrombotic events in patients with congenital prekallikrein deficiency: a critical evaluation of all reported cases,” Acta Haematologica, vol. 123, no. 4, pp. 210–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Acar, M. Yaǧci, G. T. Sucak, and R. Haznedar, “Isolated prolonged activated partial thromboplastin time in an asymptomatic patient: fletcher factor deficiency,” Thrombosis Research, vol. 118, no. 6, pp. 765–766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. S. Kitchens, “The contact system,” Archives of Pathology and Laboratory Medicine, vol. 126, no. 11, pp. 1382–1386, 2002. View at Google Scholar · View at Scopus
  13. M. Franchini, “Thrombotic complications in patients with hereditary bleeding disorders,” Thrombosis and Haemostasis, vol. 92, no. 2, pp. 298–304, 2004. View at Google Scholar · View at Scopus
  14. A. Girolami, E. Ruzzon, F. Tezza, R. Scandellari, S. Vettore, and B. Girolami, “Arterial and venous thrombosis in rare congenital bleeding disorders: a critical review,” Haemophilia, vol. 12, no. 4, pp. 345–351, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Girolami, N. Candeo, S. Vettore, A. M. Lombardi, and B. Girolami, “The clinical significance of the lack of arterial or venous thrombosis in patients with congenital prothrombin or FX deficiency,” Journal of Thrombosis and Thrombolysis, vol. 29, no. 3, pp. 299–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Girolami, M. L. Randi, S. Gavasso, A. M. Lombardi, and F. Spiezia, “The occasional venous thromboses seen in patients with severe (Homozygous) FXII deficiency are probably due to associated risk factors: a study of prevalence in 21 patients and review of the literature,” Journal of Thrombosis and Thrombolysis, vol. 17, no. 2, pp. 139–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Girolami, N. Candeo, G. B. De Marinis, E. Bonamigo, and B. Girolami, “Comparative incidence of thrombosis in reported cases of deficiencies of factors of the contact phase of blood coagulation,” Journal of Thrombosis and Thrombolysis, vol. 31, no. 1, pp. 57–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. L. T. Goodnough, H. Saito, and O. D. Ratnoff, “Thrombosis or myocardial infarction in congenital clotting factor abnormalities and chronic thrombocytopenias: a report of 21 patients and a review of 50 previously reported cases,” Medicine, vol. 62, no. 4, pp. 248–255, 1983. View at Google Scholar · View at Scopus