Case Reports in Infectious Diseases

Case Reports in Infectious Diseases / 2013 / Article

Case Report | Open Access

Volume 2013 |Article ID 686348 | https://doi.org/10.1155/2013/686348

Loeki Enggar Fitri, Teguh Wahju Sardjono, Bagus Hermansyah, Didi Candradikusuma, Nicole Berens-Riha, "Unusual Presentation of Vivax Malaria with Anaemia, Thrombocytopenia, Jaundice, Renal Disturbance, and Melena: A Report from Malang, a Nonendemic Area in Indonesia", Case Reports in Infectious Diseases, vol. 2013, Article ID 686348, 4 pages, 2013. https://doi.org/10.1155/2013/686348

Unusual Presentation of Vivax Malaria with Anaemia, Thrombocytopenia, Jaundice, Renal Disturbance, and Melena: A Report from Malang, a Nonendemic Area in Indonesia

Academic Editor: J. Iqbal
Received09 Nov 2013
Accepted09 Dec 2013
Published29 Dec 2013

Abstract

Most of the complications of malaria such as anaemia, thrombocytopenia, jaundice, and renal failure are commonly found in Plasmodium falciparum malaria, but the incidence of severe and complicated vivax malaria tends to be increasing. We report two cases of severe Plasmodium vivax malaria from Malang, a nonendemic area in Indonesia. Patients exhibited anaemia, thrombocytopenia, jaundice, renal disturbance, and melena. Microscopic peripheral blood examination and amplification of parasite 18s rRNA by polymerase chain reaction showed the presence of P. vivax and absence of P. falciparum. All patients responded well to antimalarial drugs.

1. Introduction

Several hepatic and renal complications are associated with complicated and severe falciparum malaria. Of the five human pathogenic species, Plasmodium falciparum is the most dangerous, since it can cause more severe manifestations and multisystem organ failure. Previously, Plasmodium vivax was thought as a benign parasite causing nonsevere and uncomplicated malaria, but recent reports about life-threatening complications from endemic regions such as Ethiopia [1], India [25], Brazil [6], and Papua Indonesia [7, 8] implicate that vivax malaria was dangerously underestimated. Plasmodium vivax seems to cause complications of severe malaria, including cerebral malaria [25], renal failure [5], circulatory collapse [5], pulmonary dysfunctions [5, 9] liver dysfunction [4, 5], thrombocytopenia [4], and severe anaemia [5].

2. Case Presentation

2.1. Case 1

A 28-year-old female presented with high and intermittent fever for more than three days, chills, nausea, cold sweat, and heartburn but no bleeding. Last year, she worked in Papua and was twice hospitalised because of malaria. Physical examination showed a GCS score of 15, blood pressure of 110/80 mmHg, pulse rate of 80/min, respiratory rate of 16/min, and body temperature at arrival of 36.5°C. Laboratory evaluation showed haemoglobin (Hb) of 8 mg/dL, leucocyte count of 4890/mm3, platelet count of 42000/mm3, glucose of 89 mg/dL, urea of 18.8 mmol/L, and serum creatinine of 0.56 mg/dL. The liver function tests showed an AST of 24 IU/L, ALT of 24 IU/L, total bilirubine of 2.59 mg/dL, direct bilirubine of 1.3 mg/dL, and indirect bilirubine of 1.25 mg/dL. Serum electrolyte analysis showed low potassium (2.94 mmol/L) and normal sodium levels (136 mmol/L). Blood smear showed Plasmodium vivax (parasitaemia 0.6%) as well as PCR result (Figure 1). No seizures or cerebral symptoms were observed. Patient received oral quinine  mg/day for 7 days and primaquine therapy  mg/day for 14 days. She decided to leave the hospital before total recovery (Table 1).


Case Case

Age 28 yrs 29 yrs
Sex FF
Fever >3 days 9 days
Cerebral symptoms/GCS Absent Absent
Haemoglobin (mg/dL)8*6.9*
Leucocytes (cell/mm3)4890 5870
Platelets (cell/mm3)42000*54000*
Blood glucose (mg/dL)8968
Urea (mmol/L)18.877.7**
Serum creatinine (mg/dL)0.561.46**
AST (IU/L)24354**
ALT (IU/L)2488**
Albumin (g/L)1.88
Direct bilirubine (mg/dL)1.3**3.27**
Indirect bilirubine (mg/dL)1.25**1.34**
Total bilirubine (mg/dL)2.59**4.61**
Serum electrolyte analysisNa: 136, K: 2.94* and Cl: 108Na: 135, K: 3.88 and Cl: 113
Peripheral smear P. vivax P. vivax
Nested PCR P. vivax P. vivax
Drug given Oral quinine and primaquine Oral arterakine (dihydroartemisinin + piperaquine)
Hospitalisation Discharged before fully recovered 12 days

Description: *low, **high.
2.2. Case 2

A 29-year-old pregnant female had fever 9 days before admission, also chills, nausea, vomiting, and melena. On physical examination, she showed a GCS score of 15, blood pressure of 110/80 mmHg, pulse rate of 90/min, respiratory rate of 20/min, and body temperature at arrival of 38.3°C. Laboratory evaluation showed a Hb of 6.9 mg/dL, leucocytes of 5870/mm3, platelet count of 54000/mm3, glucose of 68 mg/dL, urea of 77.7 mmol/L, serum creatinine of 1.46 mg/dL, AST of 354 IU/L, ALT of 88 IU/L, albumin of 1.88 g/L, total bilirubine of 4.61 mg/dL, direct bilirubine of 3.27 mg/dL, and indirect bilirubine of 1.34 mg/dL. Serum electrolyte analysis showed normal values. No seizures or cerebral symptoms were observed. Based on PCR results, the patient was positive for Plasmodium vivax confirming the microscopic diagnosis (parasitaemia 0.3%) (Figure 2). The patient lived in Papua since 1.5 years. She received oral arterakine (dihydroartemisinin 40 mg/piperaquine 320 mg) therapy tablet/day and recovered after 12 days (Table 1). There were no data recorded for the baby.

3. Discussion

Malang is known to be a nonendemic area of malaria in Indonesia, but some of the imported cases of malaria admitted to the Dr. Saiful Anwar Hospital showed severe clinical and laboratory complications. All patients in this study were admitted to the emergency unit. Clinical and laboratory examinations including Giemsa thin smear and polymerase chain reaction (PCR) were targeted against the 18S rRNA gene of the parasite were conducted to confirm the diagnosis [10].

Both cases had moderate anaemia with haemoglobin levels <10 mg/dL (based on WHO criteria, severe anaemia Hb <5 mg/dL). Anaemia is a common and frequently severe consequence of vivax infection. Females are at greater risk of hospitalization with Plasmodium vivax malaria than males and in one large analysis were more likely to present with anaemia. Pregnant women with Plasmodium vivax infection have a 2-fold higher risk of moderate anaemia than uninfected [11, 12]. In malaria, low haemoglobin may result from acute haemolysis due to destruction of both infected and uninfected red blood cells and dyserythropoiesis. In pregnant women, anaemia is also correlated with nutritional deficiencies [12]. The mechanism of malaria associated with severe anaemia is multifactorial and include intensive haemolysis of circulating infected RBCs and noninfected erythrocytes due to glycosylphosphatidyl-inositol toxin release as wells as dyserythropoiesis due to cytokine effects and other inducers of inflammation such as haemozoin [13]. The primary target of human Plasmodium species is the red blood cell. Plasmodium vivax has a very strong predilection for young red blood cells that have emerged from the bone marrow within the last 14 days. Despite reaching lower densities than P. falciparum, P. vivax causes similar absolute reduction in red cell mass because it results in proportionately greater removal of uninfected red blood cells [11].

Mild hypoglycaemia occurred in the second case (WHO criterion for severe hypoglycaemia is <40 mg/dL). As the patient was pregnant, hypoglycaemia could also be due to pregnancy [12]. Malaria associated hypoglycaemia due to increased metabolic demands of febrile illness, parasite utilization of glucose, failure of hepatic gluconeogenesis, and glycogenolysis [14]. More likely, the hypoglycaemia condition can be a result of a quinine-induced hyperinsulinaemia for the patient who receive quinine, a drug that is well known for causing hypoglycaemia [15].

The first case had a platelet count less than 50000/mm3. Severe thrombocytopenia is common in isolated falciparum and mixed falciparum/vivax malaria but is very rare in isolated Plasmodium vivax infection. The mechanism of thrombocytopenia in malaria is uncertain. In vivax infection, it may be due to direct lysis of the platelets, reduced platelet survival, and IgG mediated destruction [4, 16].

The incidence of leucopenia in this study was consistent with other reports. The leukocyte count in malaria is from low to normal due to the localisation of leukocytes away from peripheral circulation to spleen and other marginal pools rather than actual depletion or stasis. This is a transient finding like thrombocytopenia and normalises after antimalarial therapy [17].

The current study documented the severe manifestations of Plasmodium vivax malaria based on WHO criteria (jaundice, acute renal disturbance, and hepatic dysfunctions). Malaria-associated renal and hepatic dysfunctions are severe complications that are increasingly becoming a problem of great concern in malaria endemic countries. According to the World Health Organization, serum creatinine levels above 4.77 mg/dL are an indication of acute renal failure. Serum creatinine level in the second case showed only acute renal disturbance. The mechanisms proposed for acute renal disturbance in Plasmodium vivax infection are heavy parasitaemia, acute tubular necrosis, volume depletion, intravascular haemolysis, renal ischemia, and microvascular sequestration [18].

The increase of serum level of hepatic enzymes, transaminases (AST and ALT), and alkaline phosphatase is the markers of liver damage [19]. The second case showed elevated AST and ALT levels. Jaundice in malaria may be explained by severe haemolysis (indirect bilirubine predominance) or liver cholestasis (direct bilirubine predominance). Causes of jaundice in malaria can be classified into direct causes, including malarial hepatitis and intravascular haemolysis of parasitized red blood cells as well as indirect causes including microangiopathic haemolysis associated with disseminated intravascular coagulation (DIC), G6PD-related haemolysis, antimalarial drug induction, septicemic hepatitis, and unrelated causes such as coexisting acute viral hepatitis [19, 20].

Gastrointestinal bleeding in the form of melena occurred in the second case. The bleeding can occur for many reasons, one of which is the DIC. Cases of melena in Plasmodium vivax infection have also been reported by Lakhar et al., (1996) who explained that DIC is a major cause of bleeding [21]. Platelet count was low in both cases but above 10,000/μL. Acute bleeding due to thrombocythopenia is unlikely as long as platelet function is still effective.

Vivax malaria has been long considered to have a benign course. It is known for multiple relapses, but the typical complications seen with falciparum malaria are not found with vivax monoinfection. However, in the past few years severe and complicated clinical manifestations of vivax malaria are frequently reported, sometimes even fatalities [22, 23]. In this study it was shown that Plasmodium vivax malaria can also cause severe complications such as anaemia, thrombocythopenia, melena, acute renal disturbance, hepatic dysfunction, and jaundice. Pregnancy in Plasmodium vivax infection is clearly associated with serious complication as mentioned in this case and reported previously [12]. Rapid diagnostic tests result in prompt diagnosis, but microscopic and if possible molecular confirmation is necessary to safely diagnose mixed infections with other species. Intensive care and supportive measures along with standard protocols of management are required to treat these cases. Clinicians must be aware of unusual manifestations and prompt presentation of vivax malaria infection as mentioned in this case report and others. Early diagnosis and treatment can minimize associated morbidity and mortality. Due to changes in epidemiology, recognition of severe manifestations of Plasmodium vivax malaria, and emerging drug resistance, emphasis must be on strict preventive measures to lower the burden of this disease [24].

Conflict of Interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. T. Ketema and K. Bacha, “Plasmodium vivax associated severe Malaria complications among children in some Malaria endemic areas of Ethiopia,” BMC Public Health, vol. 13, no. 637, pp. 1–7, 2013. View at: Google Scholar
  2. R. Thapa, V. Patra, and R. Kundu, “Plasmodium vivax cerebral Malaria,” Indian Pediatrics, vol. 44, no. 6, pp. 433–434, 2007. View at: Google Scholar
  3. K. V. Vinod, K. Talari, M. Gopalakrishnan, K. K. Nisar, and T. K. Dutta, “Unusual presentations of vivax Malaria: a report of two cases,” Vector-Borne Diseases, vol. 49, no. 1, pp. 49–51, 2012. View at: Google Scholar
  4. G. S. Narang and N. Singla, “Thrombocytopenia and other complications of Plasmodium vivax Malaria,” Current Pediatric Research, vol. 15, no. 2, pp. 117–119, 2011. View at: Google Scholar
  5. D. K. Kochar, A. Das, S. K. Kochar et al., “Severe Plasmodium vivax Malaria: a report on serial cases from Bikaner in northwestern India,” American Journal of Tropical Medicine and Hygiene, vol. 80, no. 2, pp. 194–198, 2009. View at: Google Scholar
  6. M. A. Alexandre, C. O. Ferreira, A. M. Siqueira et al., “Severe Plasmodium vivax Malaria, Brazilian Amazon,” Emerging Infectious Diseases, vol. 16, no. 10, pp. 1611–1614, 2010. View at: Publisher Site | Google Scholar
  7. E. Tjitra, N. M. Anstey, P. Sugiarto et al., “Multidrug-resistant Plasmodium vivax associated with severe and fatal Malaria: a prospective study in Papua, Indonesia,” PLoS Medicine, vol. 5, no. 6, pp. 890–899, 2008. View at: Publisher Site | Google Scholar
  8. S. J. Rogerson and R. Carter, “Severe vivax Malaria: newly recognised or rediscovered?” PLoS Medicine, vol. 5, no. 6, pp. 875–877, 2008. View at: Publisher Site | Google Scholar
  9. H. Günbatar, B. Sertoğullarından, S. Ekin, B. Özbay, and A. Sünnetcioğlu, “A case of Plasmodium vivax Malaria with respiratory failure,” Journal of Clinical and Experimental Investigations, vol. 4, no. 2, pp. 226–228, 2013. View at: Google Scholar
  10. E. Sulistyaningsih, L. E. Fitri, T. Löscher, and N. Berens-Riha, “Diagnostic difficulties with Plasmodium knowlesi infection in humans,” Emerging Infectious Diseases, vol. 16, no. 6, pp. 1033–1034, 2010. View at: Publisher Site | Google Scholar
  11. N. M. Douglas, N. M. Anstey, P. A. Buffet et al., “The anaemia of Plasmodium vivax Malaria,” Malaria Journal, vol. 11, no. 135, pp. 1–14, 2012. View at: Google Scholar
  12. L. Brutus, J. Santalla, D. Schneider, J. C. Avila, and P. Deloron, “Plasmodium vivax Malaria during Pregnancy, Bolivia,” Emerging Infectious Diseases, vol. 19, no. 10, 2013. View at: Google Scholar
  13. B. B. Andrade, A. Reis-Filho, S. M. Souza-Neto et al., “Severe Plasmodium vivax Malaria exhibits marked inflammatory imbalance,” Malaria Journal, vol. 9, no. 1, 2010. View at: Publisher Site | Google Scholar
  14. D. N. Patel, P. Pradeep, M. M. Surti, and S. B. Agarwal, “Clinical manifestations of complicated Malaria—an overview,” Journal, Indian Academy of Clinical Medicine, vol. 4, no. 4, pp. 323–331, 2003. View at: Google Scholar
  15. World Health Organization, Management of Severe Malaria a Practical Handbook, 2nd edition, 2000.
  16. R. P. S. Makkar, S. Mukhopadhyay, A. Monga, A. Monga, and A. K. Gupta, “Plasmodium vivax Malaria presenting with severe thrombocytopenia,” The Brazilian Journal of Infectious Diseases, vol. 6, no. 5, pp. 263–265, 2002. View at: Google Scholar
  17. F. E. McKenzie, W. A. Prudhomme, A. J. Magill et al., “White blood cell counts and malaria,” Journal of Infectious Diseases, vol. 192, no. 2, pp. 323–330, 2005. View at: Publisher Site | Google Scholar
  18. S. Mehndiratta, K. Rajeshwari, and A. P. Dubey, “Multiple-organ dysfunction in a case of Plasmodium vivax Malaria,” Vector-Borne Diseases, vol. 50, no. 1, pp. 71–73, 2013. View at: Google Scholar
  19. M. W. Kausar, K. Moeed, N. Asif, F. Rizwi, and S. Raza, “Correlation of bilirubine with liver enzymes in patients of falciparum Malaria,” International Journal of Pathology, vol. 8, no. 2, pp. 63–67, 2010. View at: Google Scholar
  20. C. Fabbri, R. D. C. Mascarenhas-Netto, P. Lalwani et al., “Lipid peroxidation and antioxidant enzymes activity in Plasmodium vivax Malaria patients evolving with cholestatic jaundice,” Malaria Journal, vol. 12, no. 1, p. 315, 2013. View at: Google Scholar
  21. B. B. Lakhkar, S. Babu, and V. Shenoy, “DIC in vivax Malaria,” Indian Pediatrics, vol. 33, no. 11, pp. 971–972, 1996. View at: Google Scholar
  22. A. Trampuz, M. Jereb, I. Muzlovic, and R. M. Prabhu, “Clinical review: severe Malaria,” Critical Care, vol. 7, no. 4, pp. 315–323, 2003. View at: Publisher Site | Google Scholar
  23. I. R. F. Elyazar, P. W. Gething, A. P. Patil et al., “Plasmodium falciparum Malaria endemicity in indonesia in 2010,” PLoS ONE, vol. 6, no. 6, Article ID e21315, 2011. View at: Publisher Site | Google Scholar
  24. C. S. Limaye, V. A. Londhey, and S. T. Nabar, “The study of complications of Vivax Malaria in comparison with Falciparum Malaria in Mumbai,” Journal of the Association of Physicians of India, vol. 60, pp. 15–18, 2012. View at: Google Scholar

Copyright © 2013 Loeki Enggar Fitri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder
Views1907
Downloads896
Citations

Related articles