Table of Contents Author Guidelines Submit a Manuscript
Case Reports in Medicine
Volume 2014 (2014), Article ID 235756, 5 pages
Case Report

Bilateral Distal Radius Fractures in a 12-Year-Old Boy after Household Electrical Shock: Case Report and Literature Summary

Department of Orthopaedic Surgery, Maimonides Medical Center, 927 49th Street, 2nd floor, Brooklyn, NY 11219, USA

Received 30 August 2013; Accepted 26 November 2013; Published 5 January 2014

Academic Editor: John Kortbeek

Copyright © 2014 Norman Stone III et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background. Fracture resulting from household electric shock is uncommon. When it occurs, it is usually the result of a fall; however, electricity itself can cause sufficient tetany to produce a fracture. We present the case of bilateral fractures of the distal radii of a 12-year-old boy which were sustained after accidental shock. The literature regarding fractures after domestic electric shock is also reviewed. Methods. An Ovid-Medline search was conducted. The resultant articles and their bibliographies were surveyed for cases describing fractures resulting from a typical household-level voltage (110–220 V, 50–60 Hertz) and not a fall after the shock. Twenty-one articles describing 22 patients were identified. Results. Twenty-two cases were identified. Thirteen were unilateral injuries; 9 were bilateral. Proximal humerus fractures were most frequent (8 cases), followed by scapula fractures (7 cases), forearm fractures (4 cases), femoral neck fractures (2 cases), and vertebral body fracture (1 case). Eight of the 22 cases were diagnosed days to weeks after the injury. Conclusions. Fracture after electric shock is uncommon. It should be suspected in patients with persistent pain, particularly in the shoulder or forearm area. Distal radius fractures that occur during electrocution are likely due to tetany.