Canadian Respiratory Journal

Canadian Respiratory Journal / 2013 / Article

Original Article | Open Access

Volume 20 |Article ID 383019 | https://doi.org/10.1155/2013/383019

Effie J Pereira, Lauren Sim, Helen S Driver, Chris M Parker, Michael F Fitzpatrick, "The effect of inhaled menthol on upper airway resistance in humans: A randomized controlled crossover study", Canadian Respiratory Journal, vol. 20, Article ID 383019, 4 pages, 2013. https://doi.org/10.1155/2013/383019

The effect of inhaled menthol on upper airway resistance in humans: A randomized controlled crossover study

Abstract

BACKGROUND: Menthol (l-menthol) is a naturally-occurring cold receptor agonist commonly used to provide symptomatic relief for upper airway congestion. Menthol can also reduce the sensation of dyspnea. It is unclear whether the physiological action of menthol in dyspnea reduction is through its cold receptor agonist effect or whether associated mechanical changes occur in the upper airway.OBJECTIVE: To determine whether menthol inhalation alters upper airway resistance in humans.METHODS: A randomized, sham-controlled, single-blinded crossover study of inhaled menthol on upper airway resistance during semirecumbent quiet breathing in healthy subjects was conducted. Ten healthy participants (eight female) with a mean (± SD) age of 21±1.6 years completed the study.RESULTS: Nasal resistance before testing was similar on both occasions. No differences were found in respiratory frequency (mean ± SEM) (menthol 17.0±1.1 cmH2O/L/s; sham 16.9±0.9 cmH2O/L/s), minute ventilation (menthol 7.7±0.5 cmH2O/L/s; sham 7.9±0.5 cmH2O/L/s) or total inspiratory time/total breath time (menthol 0.4±0.1 cmH2O/L/s; sham 0.4±0.1 cmH2O/L/s). The upper airway resistance was similar during menthol (3.47±0.32 cmH2O/L/s) and sham (3.27±0.28 cmH2O/L/s) (P=0.33) inhalation.CONCLUSION: Inhalation of menthol does not alter upper airway resistance in awake human subjects.

Copyright © 2013 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views894
Downloads447
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.