Table of Contents Author Guidelines Submit a Manuscript
Canadian Respiratory Journal
Volume 2016 (2016), Article ID 8671742, 8 pages
http://dx.doi.org/10.1155/2016/8671742
Clinical Study

Assessment of Postresuscitation Volume Status by Bioimpedance Analysis in Patients with Sepsis in the Intensive Care Unit: A Pilot Observational Study

1Department of Medicine, McMaster University, Hamilton, ON, Canada
2Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
3Division of Nephrology, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
4Department of Family Medicine, Northern Ontario School of Medicine, Sudbury, ON, Canada
5Brampton Civic Hospital, Brampton, ON, Canada

Received 9 December 2015; Revised 23 June 2016; Accepted 12 July 2016

Academic Editor: Jörg D. Leuppi

Copyright © 2016 Bram Rochwerg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Y. Dombrovskiy, A. A. Martin, J. Sunderram, and H. L. Paz, “Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003,” Critical Care Medicine, vol. 35, no. 5, pp. 1244–1250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Rivers, B. Nguyen, S. Havstad et al., “Early goal-directed therapy in the treatment of severe sepsis and septic shock,” The New England Journal of Medicine, vol. 345, no. 19, pp. 1368–1377, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. D. M. Yealy, J. A. Kellum, D. T. Huang et al., “A randomized trial of protocol-based care for early septic shock,” The New England Journal of Medicine, vol. 370, no. 18, pp. 1683–1693, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. S. L. Peake, A. Delaney, M. Bailey et al., “Goal-directed resuscitation for patients with early septic shock,” The New England Journal of Medicine, vol. 371, no. 16, pp. 1496–1506, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Bouchard, S. B. Soroko, G. M. Chertow et al., “Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury,” Kidney International, vol. 76, no. 4, pp. 422–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Lopes, S. Jorge, C. Resina et al., “Acute renal failure in patients with sepsis,” Critical Care, vol. 11, no. 2, article 411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Payen, A. C. de Pont, Y. Sakr, C. Spies, K. Reinhart, and J. L. Vincent, “A positive fluid balance is associated with a worse outcome in patients with acute renal failure,” Critical Care, vol. 12, no. 3, article R74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. J. Cook, “Clinical assessment of central venous pressure in the critically ill,” The American Journal of the Medical Sciences, vol. 299, no. 3, pp. 175–178, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Harvey, D. A. Harrison, M. Singer et al., “Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial,” The Lancet, vol. 366, no. 9484, pp. 472–477, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Kumar, R. Anel, E. Bunnell et al., “Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects,” Critical Care Medicine, vol. 32, no. 3, pp. 691–699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Shah, V. Hasselblad, L. W. Stevenson et al., “Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials,” The Journal of the American Medical Association, vol. 294, no. 13, pp. 1664–1670, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. P. E. Marik and R. Cavallazzi, “Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense,” Critical Care Medicine, vol. 41, no. 7, pp. 1774–1781, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Piccoli, B. Rossi, L. Pillon, and G. Bucciante, “A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph,” Kidney International, vol. 46, no. 2, pp. 534–539, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. B. A. Cooper, A. Aslani, M. Ryan et al., “Comparing different methods of assessing body composition in end-stage renal failure,” Kidney International, vol. 58, no. 1, pp. 408–416, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Edefonti, A. Carcano, B. Damiani, L. Ghio, G. Consalvo, and M. Picca, “Changes in body composition assessed by bioimpedance analysis in the first 6 months of chronic peritoneal dialysis,” Advances in Peritoneal Dialysis, vol. 13, pp. 267–270, 1997. View at Google Scholar
  16. B. Guida, L. De Nicola, R. Trio, P. Pecoraro, C. Iodice, and B. Memoli, “Comparison of vector and conventional bioelectrical impedance analysis in the optimal dry weight prescription in hemodialysis,” American Journal of Nephrology, vol. 20, no. 4, pp. 311–318, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Nescolarde, A. Piccoli, A. Román et al., “Bioelectrical impedance vector analysis in haemodialysis patients: relation between oedema and mortality,” Physiological Measurement, vol. 25, no. 5, pp. 1271–1280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. B. R. Di Iorio, L. Scalfi, V. Terracciano, and V. Bellizzi, “A systematic evaluation of bioelectrical impedance measurement after hemodialysis session,” Kidney International, vol. 65, no. 6, pp. 2435–2440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. E. L. Coodley, J. L. Segal, D. H. G. Smith, and J. M. Neutel, “Bioelectrical impedance analysis as an assessment of diuresis in congestive heart failure,” The Annals of Pharmacotherapy, vol. 29, no. 11, pp. 1091–1095, 1995. View at Google Scholar · View at Scopus
  20. A. A. House, M. Haapio, P. Lentini et al., “Volume assessment in mechanically ventilated critical care patients using bioimpedance vectorial analysis, brain natriuretic peptide, and central venous pressure,” International Journal of Nephrology, vol. 2011, Article ID 413760, 5 pages, 2011. View at Publisher · View at Google Scholar
  21. D. Foster, D. Cook, J. Granton, M. Steinberg, and J. Marshall, “Use of a screen log to audit patient recruitment into multiple randomized trials in the intensive care unit. Canadian Critical Care Trials Group,” Critical Care Medicine, vol. 28, no. 3, pp. 867–871, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Piccoli, L. Pillon, and F. Dumler, “Impedance vector distribution by sex, race, body mass index, and age in the United States: standard reference intervals as bivariate Z scores,” Nutrition, vol. 18, no. 2, pp. 153–167, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Heung, D. F. Wolfgram, M. Kommareddi, Y. Hu, P. X. Song, and A. O. Ojo, “Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury,” Nephrology Dialysis Transplantation, vol. 27, no. 3, pp. 956–961, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. J. R. Prowle, J. E. Echeverri, E. V. Ligabo, C. Ronco, and R. Bellomo, “Fluid balance and acute kidney injury,” Nature Reviews Nephrology, vol. 6, no. 2, pp. 107–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. E. Grams, M. M. Estrella, J. Coresh, R. G. Brower, and K. D. Liu, “Fluid balance, diuretic use, and mortality in acute kidney injury,” Clinical Journal of the American Society of Nephrology, vol. 6, no. 5, pp. 966–973, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. L. C. Wise, J. Mersch, J. Racioppi, J. Crosier, and C. Thompson, “Evaluating the reliability and utility of cumulative intake and output,” Journal of Nursing Care Quality, vol. 14, no. 3, pp. 37–42, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. K. J. Ellis, S. J. Bell, G. M. Chertow et al., “Bioelectrical impedance methods in clinical research: a follow-up to the NIH Technology Assessment Conference,” Nutrition, vol. 15, no. 11-12, pp. 874–880, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. H. P. Wiedemann, A. P. Wheeler, G. R. Bernard et al., “Comparison of two fluid-management strategies in acute lung injury,” The New England Journal of Medicine, vol. 354, no. 24, pp. 2564–2575, 2006. View at Publisher · View at Google Scholar · View at Scopus