Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2012 (2012), Article ID 143209, 7 pages
http://dx.doi.org/10.1155/2012/143209
Review Article

Stromal-Cell-Derived Factor-1 (SDF-1)/CXCL12 as Potential Target of Therapeutic Angiogenesis in Critical Leg Ischaemia

1Division of Surgery and Interventional Science, University College London (Royal Free Campus), The Royal Free Hospital, Pond Street, London NW3 2QG, UK
2Centre for Rheumatology and Connective Tissue Disease, The Royal Free Hospital, Pond Street, London NW3 2QG, UK

Received 19 July 2011; Accepted 16 December 2011

Academic Editor: Sidney G. Shaw

Copyright © 2012 Teik K. Ho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. A. Golomb, T. T. Dang, and M. H. Criqui, “Peripheral arterial disease: morbidity and mortality implications,” Circulation, vol. 114, no. 7, pp. 688–699, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. W. T. Meijer, A. W. Hoes, D. Rutgers, M. L. Bots, A. Hofman, and D. E. Grobbee, “Peripheral arterial disease in the elderly: the rotterdam study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 18, no. 2, pp. 185–192, 1998. View at Google Scholar · View at Scopus
  3. J. Golledge, “Lower-limb arterial disease,” Lancet, vol. 350, no. 9089, pp. 1459–1464, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Novo, G. Coppola, and G. Milio, “Critical limb ischemia: definition and natural history,” Current Drug Targets, Cardiovascular and Haematological Disorders, vol. 4, no. 3, pp. 219–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Risau, “Mechanisms of angiogenesis,” Nature, vol. 386, no. 6626, pp. 671–674, 1997. View at Google Scholar · View at Scopus
  6. T. K. Ho, V. Rajkumar, D. C. Black, D. Abraham, and D. Baker, “Critical limb ischemia classification and therapeutic angiogenesis,” International Journal of Angiology, vol. 14, no. 2, pp. 49–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Rajagopalan, E. R. Mohler III, R. J. Lederman et al., “Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication,” Circulation, vol. 108, no. 16, pp. 1933–1938, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. R. Cao, E. Brokenhielm, R. Pawliuk et al., “Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2,” Nature Medicine, vol. 9, no. 5, pp. 604–613, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. Horuk, “Chemokine receptors,” Cytokine and Growth Factor Reviews, vol. 12, no. 4, pp. 313–335, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Bagri, T. Gurney, X. He et al., “The chemokine SDF1 regulates migration of dentate granule cells,” Development, vol. 129, no. 18, pp. 4249–4260, 2002. View at Google Scholar · View at Scopus
  11. R. M. Strieter, M. D. Burdick, J. Mestas, B. Gomperts, M. P. Keane, and J. A. Belperio, “Cancer CXC chemokine networks and tumour angiogenesis,” European Journal of Cancer, vol. 42, no. 6, pp. 768–778, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. A. F. Schier, “Chemokine signaling: rules of attraction,” Current Biology, vol. 13, no. 5, pp. R192–R194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. H. E. Broxmeyer, S. Cooper, L. Kohli et al., “Transgenic expression of stromal cell-derived factor-1/CXC chemokine ligand 12 enhances myeloid progenitor cell survival/antiapoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo,” Journal of Immunology, vol. 170, no. 1, pp. 421–429, 2003. View at Google Scholar · View at Scopus
  14. T. Nagasawa, S. Hirota, K. Tachibana et al., “Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1,” Nature, vol. 382, no. 6592, pp. 635–638, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. Q. Ma, D. Jones, and T. A. Springer, “The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment,” Immunity, vol. 10, no. 4, pp. 463–471, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Lu, J. A. Gersting, A. Maheshwari, R. D. Christensen, and D. A. Calhoun, “Developmental expression of chemokine receptor genes in the human fetus,” Early Human Development, vol. 81, no. 6, pp. 489–496, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. K. Balabanian, B. Lagane, S. Infantino et al., “The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes,” Journal of Biological Chemistry, vol. 280, no. 42, pp. 35760–35766, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Z. Ratajczak, E. Zuba-Surma, M. Kucia, R. Reca, W. Wojakowski, and J. Ratajczak, “The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis,” Leukemia, vol. 20, no. 11, pp. 1915–1924, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. Shirozu, T. Nakano, J. Inazawa et al., “Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene,” Genomics, vol. 28, no. 3, pp. 495–500, 1995. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. M. Gleichmann, C. Gillen, M. Czardybon et al., “Cloning and characterization of SDF-1γ, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system,” European Journal of Neuroscience, vol. 12, no. 6, pp. 1857–1866, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Janowski, “Functional diversity of SDF-1 splicing variants,” Cell Adhesion and Migration, vol. 3, no. 3, pp. 243–249, 2009. View at Google Scholar · View at Scopus
  22. I. Petit, D. Jin, and S. Rafii, “The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis,” Trends in Immunology, vol. 28, no. 7, pp. 299–307, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. T. K. Ho, J. Tsui, S. Xu, P. Leoni, D. J. Abraham, and D. M. Baker, “Angiogenic effects of stromal cell-derived factor-1 (SDF-1/CXCL12) variants in vitro and the in vivo expressions of CXCL12 variants and CXCR4 in human critical leg ischemia,” Journal of Vascular Surgery, vol. 51, no. 3, pp. 689–699, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. D. J. Ceradini, A. R. Kulkarni, M. J. Callaghan et al., “Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1,” Nature Medicine, vol. 10, no. 8, pp. 858–864, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. T. K. Ho, V. Rajkumar, M. Ponticos et al., “Increased endogenous angiogenic response and hypoxia-inducible factor-1α in human critical limb ischemia,” Journal of Vascular Surgery, vol. 43, no. 1, pp. 125–133, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. C. Murdoch, P. N. Monk, and A. Finn, “CXC chemokine receptor expression on human endothelial cells,” Cytokine, vol. 11, no. 9, pp. 704–712, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Kucia, J. Ratajczak, R. Reca, A. Janowska-Wieczorek, and M. Z. Ratajczak, “Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury,” Blood Cells, Molecules, and Diseases, vol. 32, no. 1, pp. 52–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Z. Ratajczak, M. Majka, M. Kucia et al., “Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles,” Stem Cells, vol. 21, no. 3, pp. 363–371, 2003. View at Google Scholar · View at Scopus
  29. T. Schioppa, B. Uranchimeg, A. Saccani et al., “Regulation of the chemokine receptor CXCR4 by hypoxia,” Journal of Experimental Medicine, vol. 198, no. 9, pp. 1391–1402, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. P. Staller, J. Sulitkova, J. Lisztwan, H. Moch, E. J. Oakeley, and W. Krek, “Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL,” Nature, vol. 425, no. 6955, pp. 307–311, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. J. M. Busillo and J. L. Benovic, “Regulation of CXCR4 signaling,” Biochimica et Biophysica Acta, Biomembranes, vol. 1768, no. 4, pp. 952–963, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. T. Lapidot, A. Dar, and O. Kollet, “How do stem cells find their way home?” Blood, vol. 106, no. 6, pp. 1901–1910, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. T. Papayannopoulou, “Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization,” Blood, vol. 103, no. 5, pp. 1580–1585, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. J. Orsini, J. L. Parent, S. J. Mundell, A. Marchese, and J. L. Benovic, “Trafficking of the HIV coreceptor CXCR4: role of arrestins and identification of residues in the C-terminal tail that mediate receptor internalization,” Journal of Biological Chemistry, vol. 274, no. 33, pp. 31076–31086, 1999. View at Google Scholar · View at Scopus
  35. M. Z. Ratajczak, R. Reca, M. Wysoczynski et al., “Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells,” Leukemia, vol. 18, no. 9, pp. 1482–1490, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. M. Wysoczynski, R. Reca, J. Ratajczak et al., “Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient,” Blood, vol. 105, no. 1, pp. 40–48, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. M. Berthebaud, C. Riviere, P. Jarrier et al., “RGS16 is a negative regulator of SDF-1-CXCR4 signaling in megakaryocytes,” Blood, vol. 106, no. 9, pp. 2962–2968, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. Y. Le, M. Honczarenko, A. M. Glodek, D. K. Ho, and L. E. Silberstein, “CXC chemokine ligand 12-induced focal adhesion kinase activation and segregation into membrane domains is modulated by regulator of G protein signaling 1 in pro-B cells,” Journal of Immunology, vol. 174, no. 5, pp. 2582–2590, 2005. View at Google Scholar · View at Scopus
  39. A. Z. Fernandis, R. P. Cherla, and R. K. Ganju, “Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 9536–9543, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. R. J. Phillips, J. Mestas, M. Gharaee-Kermani et al., “Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1α,” Journal of Biological Chemistry, vol. 280, no. 23, pp. 22473–22481, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. M. Vicente-Manzanares, M. Rey, D. R. Jones et al., “Involvement of phosphatidylinositol 3-kinase in stromal cell-derived factor-1α-induced lymphocyte polarization and chemotaxis,” Journal of Immunology, vol. 163, no. 7, pp. 4001–4012, 1999. View at Google Scholar · View at Scopus
  42. R. K. Ganju, S. A. Brubaker, J. Meyer et al., “The α-chemokine, stromal cell-derived factor-1α, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways,” Journal of Biological Chemistry, vol. 273, no. 36, pp. 23169–23175, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. S. N. Zaman, M. E. Resek, and S. M. Robbins, “Dual acylation and lipid raft association of Src-family protein tyrosine kinases are required for SDF-1/CXCL12-mediated chemotaxis in the Jurkat human T cell lymphoma cell line,” Journal of Leukocyte Biology, vol. 84, no. 4, pp. 1082–1091, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. R. J. Phillips, M. D. Burdick, M. Lutz, J. A. Belperio, M. P. Keane, and R. M. Strieter, “The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 12, pp. 1676–1686, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. K. I. Oonakahara, W. Matsuyama, I. Higashimoto, M. Kawabata, K. Arimura, and M. Osame, “Stromal-derived factor-1α/CXCL12-CXCR 4 axis is involved in the dissemination of NSCLC cells into pleural space,” American Journal of Respiratory Cell and Molecular Biology, vol. 30, no. 5, pp. 671–677, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. Z. Fernandis, A. Prasad, H. Band, R. Klösel, and R. K. Ganju, “Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells,” Oncogene, vol. 23, no. 1, pp. 157–167, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. J. Libura, J. Drukala, M. Majka et al., “CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion,” Blood, vol. 100, no. 7, pp. 2597–2606, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. C. H. Tang, T. W. Tan, W. M. Fu, and R. S. Yang, “Involvement of matrix metalloproteinase-9 in stromal cell-derived factor-1/CXCR4 pathway of lung cancer metastasis,” Carcinogenesis, vol. 29, no. 1, pp. 35–43, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. A. Janowska-Wieczorek, L. A. Marquez, A. Dobrowsky, M. Z. Ratajczak, and M. L. Cabuhat, “Differential MMP and TIMP production by human marrow and peripheral blood CD34+ cells in response to chemokines,” Experimental Hematology, vol. 28, no. 11, pp. 1274–1285, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. Z. Liang, J. Brooks, M. Willard et al., “CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway,” Biochemical and Biophysical Research Communications, vol. 359, no. 3, pp. 716–722, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. P. Carmeliet, “Mechanisms of angiogenesis and arteriogenesis,” Nature Medicine, vol. 6, no. 4, pp. 389–395, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. A. J. Vila-Coro, J. M. Rodríguez-Frade, A. M. De Ana, M. C. Moreno-Ortíz, C. Martínez-A, and M. Mellado, “The chemokine SDF-1α triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway,” FASEB Journal, vol. 13, no. 13, pp. 1699–1710, 1999. View at Google Scholar
  53. T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Takahashi, C. Kalka, H. Masuda et al., “Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization,” Nature Medicine, vol. 5, no. 4, pp. 434–438, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. S. P. Lee, S. W. Youn, H. J. Cho et al., “Integrin-linked kinase, a hypoxia-responsive molecule, controls postnatal vasculogenesis by recruitment of endothelial progenitor cells to ischemic tissue,” Circulation, vol. 114, no. 2, pp. 150–159, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. Y. Yang, G. Tang, J. Yan et al., “Cellular and molecular mechanism regulating blood flow recovery in acute versus gradual femoral artery occlusion are distinct in the mouse,” Journal of Vascular Surgery, vol. 48, no. 6, pp. 1546–1558, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. J. S. Wang, X. Liu, Z. Y. Xue et al., “Effects of aging on time course of neovascularization-related gene expression following acute hindlimb ischemia in mice,” Chinese Medical Journal, vol. 124, no. 7, pp. 1075–1081, 2011. View at Publisher · View at Google Scholar
  58. P. Cipriani, A. F. Milia, V. Liakouli et al., “Differential expression of stromal cell-derived factor 1 and its receptor CXCR4 in the skin and endothelial cells of systemic sclerosis patients: pathogenetic implications,” Arthritis and Rheumatism, vol. 54, no. 9, pp. 3022–3033, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. V. van Weel, L. Seghers, M. R. De Vries et al., “Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 6, pp. 1426–1432, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. J. I. Yamaguchi, K. F. Kusano, O. Masuo et al., “Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization,” Circulation, vol. 107, no. 9, pp. 1322–1328, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. M. A. Kuliszewski, J. Kobulnik, J. R. Lindner, D. J. Stewart, and H. Leong-Poi, “Vascular gene transfer of SDF-1 promotes endothelial progenitor cell engraftment and enhances angiogenesis in ischemic muscle,” Molecular Therapy, vol. 19, no. 5, pp. 895–902, 2011. View at Publisher · View at Google Scholar · View at PubMed
  62. V. F. M. Segers, V. Revin, W. Wu et al., “Protease-resistant stromal cell-derived factor-1 for the treatment of experimental peripheral artery disease,” Circulation, vol. 123, no. 12, pp. 1306–1315, 2011. View at Publisher · View at Google Scholar · View at PubMed
  63. G. A. McQuibban, G. S. Butler, J. H. Gong et al., “Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1,” Journal of Biological Chemistry, vol. 276, no. 47, pp. 43503–43508, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. K. Zhang, G. A. McQuibban, C. Silva et al., “HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration,” Nature Neuroscience, vol. 6, no. 10, pp. 1064–1071, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. A. Zernecke, A. Schober, I. Bot et al., “SDF-1α/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells,” Circulation Research, vol. 96, no. 7, pp. 784–791, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. R. Salcedo and J. J. Oppenheim, “Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses,” Microcirculation, vol. 10, no. 3-4, pp. 359–370, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. M. Grunewald, I. Avraham, Y. Dor et al., “VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells,” Cell, vol. 124, no. 1, pp. 175–189, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. N. Karin, “The multiple faces of CXCL12 (SDF-1α) in the regulation of immunity during health and disease,” Journal of Leukocyte Biology, vol. 88, no. 3, pp. 463–473, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. M. J. Gounis, M. G. Spiga, R. M. Graham et al., “Angiogenesis is confined to the transient period of VEGF expression that follows adenoviral gene delivery to ischemic muscle,” Gene Therapy, vol. 12, no. 9, pp. 762–771, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus