Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2012 (2012), Article ID 191807, 8 pages
http://dx.doi.org/10.1155/2012/191807
Clinical Study

Hemodynamic Changes during a Deep Inspiration Maneuver Predict Fluid Responsiveness in Spontaneously Breathing Patients

1Service de Réanimation Polyvalente, Centre Hospitalier Jean Bernard, Avenue Désandrouin, 59300 Valenciennes, France
2Service de Réanimation Médicale et Médecine Hyperbare, Hopital Albert Calmette, CHRU de Lille, Boulevard du Professeur J. Leclercq, 59037 Lille Cedex, France
3Université Lille Nord de France, EA 3614, 59000 Lille, France

Received 24 May 2011; Accepted 20 September 2011

Academic Editor: Philippe Vignon

Copyright © 2012 Sébastien Préau et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Mion and J. Y. Lefrant, “Adverse effects of blood volume expansion,” Reanimation, vol. 13, no. 4, pp. 273–278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Michard and J. L. Teboul, “Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence,” Chest, vol. 121, no. 6, pp. 2000–2008, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Teboul, “SRLF experts recommendations: indicators of volume resuscitation during circulatory failure,” Reanimation, vol. 13, no. 4, pp. 255–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Soubrier, F. Saulnier, H. Hubert et al., “Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients?” Intensive Care Medicine, vol. 33, no. 7, pp. 1117–1124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Maizel, N. Airapetian, E. Lorne, C. Tribouilloy, Z. Massy, and M. Slama, “Diagnosis of central hypovolemia by using passive leg raising,” Intensive Care Medicine, vol. 33, no. 7, pp. 1133–1138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Lamia, A. Ochagavia, X. Monnet, D. Chemla, C. Richard, and J. L. Teboul, “Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity,” Intensive Care Medicine, vol. 33, no. 7, pp. 1125–1132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Préau, F. Saulnier, F. Dewavrin, A. Durocher, and J. L. Chagnon, “Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis,” Critical Care Medicine, vol. 38, no. 3, pp. 819–825, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. I. Monge García, A. Gil Cano, and J. C. Díaz Monrové, “Arterial pressure changes during the Valsalva maneuver to predict fluid responsiveness in spontaneously breathing patients,” Intensive Care Medicine, vol. 35, no. 1, pp. 77–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. L. Teboul and X. Monnet, “Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity,” Current Opinion in Critical Care, vol. 14, no. 3, pp. 334–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Lakhal, S. Ehrmann, I. Runge et al., “Central venous pressure measurements improve the accuracy of leg raising-induced change in pulse pressure to predict fluid responsiveness,” Intensive Care Medicine, vol. 36, no. 6, pp. 940–948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Pinsky, “Cardiovascular issues in respiratory care,” Chest, vol. 128, no. 5, supplement 2, pp. 592S–597S, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. W. Patterson and E. H. Starling, “On the mechanical factors which determine the output of the ventricles,” The Journal of Physiology, vol. 48, pp. 357–379, 1914. View at Google Scholar
  13. D. D. Glower, J. A. Spratt, N. D. Snow et al., “Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work,” Circulation, vol. 71, pp. 994–1009, 1985. View at Google Scholar
  14. D. De Backer, S. Heenen, M. Piagnerelli, M. Koch, and J. L. Vincent, “Pulse pressure variations to predict fluid responsiveness: influence of tidal volume,” Intensive Care Medicine, vol. 31, no. 4, pp. 517–523, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. A. Reuter, J. Bayerlein, M. S. G. Goepfert et al., “Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients,” Intensive Care Medicine, vol. 29, no. 3, pp. 476–480, 2003. View at Google Scholar · View at Scopus
  16. A. Szold, R. Pizov, E. Segal, and A. Perel, “The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs,” Intensive Care Medicine, vol. 15, no. 6, pp. 368–371, 1989. View at Google Scholar · View at Scopus
  17. M. L. N. G. Malbrain, M. L. Cheatham, A. Kirkpatrick et al., “Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions,” Intensive Care Medicine, vol. 32, no. 11, pp. 1722–1732, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. F. Lewis, L. C. Kuo, J. G. Nelson, M. C. Limacher, and M. A. Quinones, “Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window,” Circulation, vol. 70, no. 3, pp. 425–431, 1984. View at Google Scholar · View at Scopus
  19. F. Michard, S. Boussat, D. Chemla et al., “Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 1, pp. 134–138, 2000. View at Google Scholar · View at Scopus
  20. J. A. Hanley and B. J. McNeil, “A method of comparing the areas under receiver operating characteristic curves derived from the same cases,” Radiology, vol. 148, no. 3, pp. 839–843, 1983. View at Google Scholar · View at Scopus
  21. W. J. Youden, “Index for rating diagnostic tests,” Cancer, vol. 3, no. 1, pp. 32–35, 1950. View at Google Scholar · View at Scopus
  22. M. I. Monge García, A. Gil Cano, and J. C. Díaz Monrové, “Brachial artery peak velocity variation to predict fluid responsiveness in mechanically ventilated patients,” Critical Care, vol. 13, no. 5, p. R142, 2009. View at Google Scholar · View at Scopus
  23. M. K. Dahl, S. T. Vistisen, J. Koefoed-Nielsen, and A. Larsson, “Using an expiratory resistor, arterial pulse pressure variations predict fluid responsiveness during spontaneous breathing: an experimental porcine study,” Critical Care, vol. 13, no. 2, article no. R39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. S. Kuzo, R. A. Pooley, J. E. Crook, M. G. Heckman, and T. C. Gerber, “Measurement of caval blood flow with MRI during respiratory maneuvers: implications for vascular contrast opacification on pulmonary CT angiographic studies,” American Journal of Roentgenology, vol. 188, no. 3, pp. 839–842, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. T. S. Hakim, R. P. Michel, and H. K. Chang, “Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 53, no. 5, pp. 1110–1115, 1982. View at Google Scholar · View at Scopus
  26. A. J. Buda, M. R. Pinsky, N. B. Ingels Jr., G. T. Daughters II, E. B. Stinson, and E. L. Alderman, “Effect of intrathoracic pressure on left ventricular performance,” The New England Journal of Medicine, vol. 301, pp. 453–459, 1979. View at Google Scholar
  27. M. Karam, R. A. Wise, and T. K. Natarajan, “Mechanism of decreased left ventricular stroke volume during inspiration in man,” Circulation, vol. 69, no. 5, pp. 866–873, 1984. View at Google Scholar · View at Scopus
  28. S. M. Scharf, R. Brown, N. Saunders, and L. H. Green, “Effects of normal and loaded spontaneous inspiration on cardiovascular function,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 47, no. 3, pp. 582–590, 1979. View at Google Scholar · View at Scopus
  29. Y. Mahjoub, C. Pila, A. Friggeri et al., “Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle,” Critical Care Medicine, vol. 37, no. 9, pp. 2570–2575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. N. Cohn, A. L. Pinkerson, and F. E. Tristani, “Mechanism of pulsus paradoxus in clinical shock,” Journal of Clinical Investigation, vol. 46, no. 11, pp. 1744–1755, 1967. View at Google Scholar · View at Scopus
  31. R. Shabetai, N. O. Fowler, J. C. Fenton, and M. Masangkay, “Pulsus paradoxus,” Journal of Clinical Investigation, vol. 44, no. 11, pp. 1882–1898, 1965. View at Google Scholar · View at Scopus