Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2012, Article ID 370697, 7 pages
http://dx.doi.org/10.1155/2012/370697
Review Article

Should We Monitor ScVO2 in Critically Ill Patients?

1Department of Anesthesiology and Critical Care Medicine, Hospital Lariboisière 75475, Paris, France
2Department of Anesthesiology and Critical Care Medicine, Hôspital Européen Georges Pompidou, Université Paris V Descartes, Sorbonne Paris Cité, 20 Rue Leblanc, 75015 Paris, France

Received 17 May 2011; Revised 8 July 2011; Accepted 25 July 2011

Academic Editor: Antoine Vieillard-Baron

Copyright © 2012 Sophie Nebout and Romain Pirracchio. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Levy, M. P. Fink, J. C. Marshall et al., “2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference,” Critical Care Medicine, vol. 31, no. 4, pp. 1250–1256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Valles, J. Rello, A. Ochagavia, J. Garnacho, and M. A. Alcala, “Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival,” Chest, vol. 123, no. 5, pp. 1615–1624, 2003. View at Google Scholar
  3. M. Antonelli, M. Levy, P. J. Andrews et al., “Hemodynamic monitoring in shock and implications for management: International Consensus Conference, Paris, France, 27-28 April 2006,” Intensive Care Medicine, vol. 33, no. 4, pp. 575–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Sakr, M. J. Dubois, D. De Backer, J. Creteur, and J. L. Vincent, “Persistent-microcirculatory alterations are associated with organ failure and death in patients with septic shock,” Critical Care Medicine, vol. 32, no. 9, pp. 1825–1831, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Vincent and D. De Backer, “Oxygen transport—the oxygen delivery controversy,” Intensive Care Medicine, vol. 30, no. 11, pp. 1990–1996, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. Vincent and M. H. Weil, “Fluid challenge revisited,” Critical Care Medicine, vol. 34, no. 5, pp. 1333–1337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Reinhart and F. Bloos, “The value of venous oximetry,” Current Opinion in Critical Care, vol. 11, no. 3, pp. 259–263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. Scheinman, M. A. Brown, and E. Rapaport, “Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients,” Circulation, vol. 40, no. 2, pp. 165–172, 1969. View at Google Scholar · View at Scopus
  9. T. Miyairi, T. Miwa, T. Takayama, K. Ka, and K. Itoh, “Continuous monitoring of coronary sinus oxygen saturation during warm heart surgery,” Journal of Thoracic and Cardiovascular Surgery, vol. 108, no. 4, pp. 795–796, 1994. View at Google Scholar · View at Scopus
  10. K. Reinhart, T. Rudolph, D. L. Bredle, L. Hannemann, and S. M. Cain, “Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand,” Chest, vol. 95, no. 6, pp. 1216–1221, 1989. View at Google Scholar · View at Scopus
  11. K. Reinhart, H. J. Kuhn, C. Hartog, and D. L. Bredle, “Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill,” Intensive Care Medicine, vol. 30, no. 8, pp. 1572–1578, 2004. View at Google Scholar · View at Scopus
  12. C. Martin, J. P. Auffray, C. Badetti, G. Perrin, L. Papazian, and F. Gouin, “Monitoring of central venous oxygen saturation versus mixed venous oxygen saturation in critically ill patients,” Intensive Care Medicine, vol. 18, no. 2, pp. 101–104, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Tahvanainen, O. Meretoja, and P. Nikki, “Can central venous blood replace mixed venous blood samples?” Critical Care Medicine, vol. 10, no. 11, pp. 758–761, 1982. View at Google Scholar · View at Scopus
  14. M. Wendt, T. Hachenberg, A. Albert, and R. Janzen, “Mixed venous versus central venous oxygen saturation in intensive medicine,” Anasth Intensivther Notfallmed, vol. 25, no. 1, pp. 102–106, 1990. View at Google Scholar
  15. C. H. Kong, F. D. Thompson, and F. J. Imms, “Cardiac output and oxygen uptake in patients with renal failure,” Clinical Science, vol. 78, no. 6, pp. 591–596, 1990. View at Google Scholar · View at Scopus
  16. J. C. Berridge, “Influence of cardiac output on the correlation between mixed venous and central venous oxygen saturation,” British Journal of Anaesthesia, vol. 69, no. 4, pp. 409–410, 1992. View at Google Scholar · View at Scopus
  17. A. Herrera, A. Pajuelo, M. J. Morano, M. P. Ureta, J. Gutierrez-Garcia, and M. de las Mulas, “Comparison of oxygen saturations in mixed venous and central blood during thoracic anesthesia with selective single-lung ventilation,” Revista Española de Anestesiología y Reanimación, vol. 40, no. 6, pp. 349–353, 1993. View at Google Scholar
  18. M. Pieri, L. S. Brandi, R. Bertolini, M. Calafà, and F. Giunta, “Comparison of bench central and mixed pulmonary venous oxygen saturation in critically ill postsurgical patients,” Minerva Anestesiologica, vol. 61, no. 7-8, pp. 285–291, 1995. View at Google Scholar · View at Scopus
  19. C. Ladakis, P. Myrianthefs, A. Karabinis et al., “Central venous and mixed venous oxygen saturation in critically ill patients,” Respiration, vol. 68, no. 3, pp. 279–285, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. L. S. Chawla, H. Zia, G. Gutierrez, N. M. Katz, M. G. Seneff, and M. Shah, “Lack of equivalence between central and mixed venous oxygen saturation,” Chest, vol. 126, no. 6, pp. 1891–1896, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. H. Dueck, M. Klimek, S. Appenrodt, C. Weigand, and U. Boerner, “Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions,” Anesthesiology, vol. 103, no. 2, pp. 249–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. M. Ho, R. Harding, J. Chamberlain, and M. Bulsara, “A comparison of central and mixed venous oxygen saturation in circulatory failure,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 24, no. 3, pp. 434–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds, and E. D. Bennett, “Changes in central venous saturation after major surgery, and association with outcome,” Critical Care, vol. 9, no. 6, pp. R694–R699, 2005. View at Google Scholar · View at Scopus
  24. E. Futier, E. Robin, M. Jabaudon et al., “Central venous O2 saturation and venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery,” Critical Care, vol. 14, no. 5, article R193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. M. Scalea, R. W. Hartnett, A. O. Duncan et al., “Central venous oxygen saturation: a useful clinical tool in trauma patients,” The Journal of Trauma, vol. 30, no. 12, pp. 1539–1543, 1990. View at Google Scholar · View at Scopus
  26. A. M. Hutter Jr. and A. J. Moss, “Central venous oxygen saturations: value of serial determinations in patients with acute myocardial infarction,” The Journal of the American Medical Association, vol. 212, no. 2, pp. 299–303, 1970. View at Publisher · View at Google Scholar · View at Scopus
  27. D. S. Ander, M. Jaggi, E. Rivers et al., “Undetected cardiogenic shock in patients with congestive heart failure presenting to the emergency department,” The American Journal of Cardiology, vol. 82, no. 7, pp. 888–891, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Y. Rady, E. P. Rivers, G. B. Martin, H. Smithline, T. Appelton, and R. M. Nowak, “Continuous central venous oximetry and shock index in the emergency department: use in the evaluation of clinical shock,” American Journal of Emergency Medicine, vol. 10, no. 6, pp. 538–541, 1992. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Rivers, B. Nguyen, S. Havstad et al., “Early goal-directed therapy in the treatment of severe sepsis and septic shock,” The New England Journal of Medicine, vol. 345, no. 19, pp. 1368–1377, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Levy, R. P. Dellinger, S. R. Townsend et al., “The surviving sepsis campaign: results of an international guideline-based performance improvement program targeting severe sepsis,” Intensive Care Medicine, vol. 36, no. 2, pp. 222–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. B. Nguyen, S. W. Corbett, R. Steele et al., “Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality,” Critical Care Medicine, vol. 35, no. 4, pp. 1105–1112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. E. Jones, N. I. Shapiro, S. Trzeciak, R. C. Arnold, H. A. Claremont, and J. A. Kline, “Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial,” The Journal of the American Medical Association, vol. 303, no. 8, pp. 739–746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. R. P. Dellinger, M. M. Levy, J. M. Carlet et al., “Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008,” Critical Care Medicine, vol. 36, no. 1, pp. 296–327, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. P. W. G. Elbers and C. Ince, “Bench-to-bedside review: mechanisms of critical illness—classifying microcirculatory flow abnormalities in distributive shock,” Critical Care, vol. 10, no. 4, article 221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. R. J. Levy and C. S. Deutschman, “Cytochrome c oxidase dysfunction in sepsis,” Critical Care Medicine, vol. 35, no. 9, pp. S468–S475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. J. Lehot, C. Elarby, J. J. Vallon, and J. Motin, “Oxyhaemoglobin dissociation curve and 2,3-diphosphoglycerate in septic shock,” Annales Francaises d'Anesthesie et de Reanimation, vol. 3, no. 2, pp. 85–89, 1984. View at Google Scholar · View at Scopus
  37. P. A. van Beest, J. J. Hofstra, M. J. Schultz, C. E. Boerma, P. E. Spronk, and M. A. Kuiper, “The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in The Netherlands,” Critical Care, vol. 12, no. 2, article R33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Kopterides, S. Bonovas, I. Mavrou, E. Kostadima, E. Zakynthinos, and A. Armaganidis, “Venous oxygen saturation and lactate gradient from superior vena cava to pulmonary artery in patients with septic shock,” Shock, vol. 31, no. 6, pp. 561–567, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Varpula, S. Karlsson, E. Ruokonen, and V. Pettilä, “Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock,” Intensive Care Medicine, vol. 32, no. 9, pp. 1336–1343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. B. C. H. Ho, R. Bellomo, F. McGain et al., “The incidence and outcome of septic shock patients in the absence of early-goal directed therapy,” Critical Care, vol. 10, no. 3, article R80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. “The outcome of patients with sepsis and septic shock presenting to emergency departments in Australia and New Zealand,” Critical Care and Resuscitation, vol. 9, no. 1, pp. 8–18, 2007.
  42. M. Legrand, R. Bezemer, A. Kandil, C. Demirci, D. Payen, and C. Ince, “The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats,” Journal of Intensive Care Medicine, vol. 37, no. 9, pp. 1534–1542, 2011. View at Publisher · View at Google Scholar
  43. C. E. Lagoa, L. F. de Figueiredo, R. J. Cruz, E. Silva, and M. Rocha e Silva, “Effects of volume resuscitation on splanchnic perfusion in canine model of severe sepsis induced by live Escherichia coli infusion,” Critical Care, vol. 8, no. 4, pp. R221–R228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Vallet, N. Lund, S. E. Curtis, D. Kelly, and S. M. Cain, “Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation,” Journal of Applied Physiology, vol. 76, no. 2, pp. 793–800, 1994. View at Google Scholar · View at Scopus
  45. N. Nagdyman, T. Fleck, S. Barth et al., “Relation of cerebral tissue oxygenation index to central venous oxygen saturation in children,” Intensive Care Medicine, vol. 30, no. 3, pp. 468–471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Feldman and C. S. Robertson, “Monitoring of cerebral hemodynamics with jugular bulb catheters,” Critical Care Clinics, vol. 13, no. 1, pp. 51–77, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. M. O. Gayle, T. C. Frewen, R. F. Armstrong et al., “Jugular venous bulb catheterization in infants and children,” Critical Care Medicine, vol. 17, no. 5, pp. 385–388, 1989. View at Google Scholar · View at Scopus
  48. E. L. Gibbs, W. G. Lennox, L. F. Nims, and F. A. Gibbs, “Arterial and cerebral venous blood: arterial-venous differences in man,” The Journal of Biological Chemistry, vol. 144, no. 2, pp. 325–332, 1942. View at Google Scholar
  49. R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiologica Scandinavica, vol. 168, no. 4, pp. 615–622, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” Journal of Applied Physiology, vol. 77, no. 6, pp. 2740–2747, 1994. View at Google Scholar · View at Scopus
  51. M. Podbregar and H. Mozina, “Skeletal muscle oxygen saturation does not estimate mixed venous oxygen saturation in patients with severe left heart failure and additional severe sepsis or septic shock,” Critical Care, vol. 11, no. 1, article R6, 2007. View at Google Scholar · View at Scopus
  52. S. M. Cohn, A. B. Nathens, F. A. Moore et al., “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” The Journal of Trauma, vol. 62, no. 1, pp. 44–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Creteur, T. Carollo, G. Soldati, G. Buchele, D. De Backer, and J. L. Vincent, “The prognostic value of muscle StO2 in septic patients,” Intensive Care Medicine, vol. 33, no. 9, pp. 1549–1556, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Leone, S. Blidi, F. Antonini et al., “Oxygen tissue saturation is lower in nonsurvivors than in survivors after early resuscitation of septic shock,” Anesthesiology, vol. 111, no. 2, pp. 366–371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Rodriguez, T. Lisboa, I. Martin-Loeches et al., “Mortality and regional oxygen saturation index in septic shock patients: a pilot study,” The Journal of Trauma, vol. 70, no. 5, pp. 1145–1152, 2011. View at Google Scholar
  56. L. Heyer, A. Mebazaa, E. Gayat et al., “Cardiac troponin and skeletal muscle oxygenation in severe post-partum haemorrhage,” Critical Care, vol. 13, supplement 5, article S8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Mesquida, G. Gruartmoner, M. L. Martínez et al., “Thenar oxygen saturation (StO2) and invasive oxygen delivery measurements in critically ill patients in early septic shock,” Shock, vol. 35, no. 5, pp. 456–459, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Mesquida, J. Masip, G. Gili, A. Artigas, and F. Baigorri, “Thenar oxygen saturation measured by near infrared spectroscopy as a noninvasive predictor of low central venous oxygen saturation in septic patients,” Intensive Care Medicine, vol. 35, no. 6, pp. 1106–1109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. K. E. Mulier, D. E. Skarda, J. H. Taylor et al., “Near-infrared spectroscopy in patients with severe sepsis: correlation with invasive hemodynamic measurements,” Surgical Infections, vol. 9, no. 5, pp. 515–519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” British Journal of Anaesthesia, vol. 103, supplement 1, pp. i3–i13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Nahum, P. W. Skippen, R. E. Gagnon, A. J. Macnab, and E. D. Skarsgard, “Correlation of transcutaneous hepatic near-infrared spectroscopy readings with liver surface readings and perfusion parameters in a piglet endotoxemic shock model,” Liver International, vol. 26, no. 10, pp. 1277–1282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Girardis, L. Rinaldi, S. Busani, I. Flore, S. Mauro, and A. Pasetto, “Muscle perfusion and oxygen consumption by near-infrared spectroscopy in septic-shock and non-septic-shock patients,” Intensive Care Medicine, vol. 29, no. 7, pp. 1173–1176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Mayeur, S. Campard, C. Richard, and J. L. Teboul, “Comparison of four different vascular occlusion tests for assessing reactive hyperemia using near-infrared spectroscopy,” Critical Care Medicine, vol. 39, no. 4, pp. 695–701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Lima, J. van Bommel, K. Sikorska et al., “The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients,” Critical Care Medicine, vol. 39, no. 7, pp. 1649–1654, 2011. View at Google Scholar
  65. F. Vallée, J. Mateo, G. Dubreuil et al., “Cutaneous ear lobe PCO2 at 37C° to evaluate microperfusion in patients with septic shock,” Chest, vol. 138, no. 5, pp. 1062–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus