Table of Contents Author Guidelines Submit a Manuscript
Cardiology Research and Practice
Volume 2013, Article ID 986847, 7 pages
http://dx.doi.org/10.1155/2013/986847
Clinical Study

Brachial-Ankle Pulse Wave Velocity Is the Only Index of Arterial Stiffness That Correlates with a Mitral Valve Indices of Diastolic Dysfunction, but No Index Correlates with Left Atrial Size

Department of Medicine (Cardiology), University of British Columbia, Level 9, 2775 Laurel Street, Vancouver, BC, Canada V5Z 1M9

Received 3 December 2012; Accepted 11 February 2013

Academic Editor: F. H. H. Leenen

Copyright © 2013 Bryan Chow and Simon W. Rabkin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. A. Borlaug and W. J. Paulus, “Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment,” European Heart Journal, vol. 32, no. 6, pp. 670–679, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. J. McMurray, S. Adamopoulos, S. D. Anker et al., “ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008. The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM),” European Journal of Heart Failure, vol. 10, no. 10, pp. 933–989, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. C. Kane, B. L. Karon, D. W. Mahoney et al., “Progression of left ventricular diastolic dysfunction and risk of heart failure,” Journal of the American Medical Association, vol. 306, no. 6, pp. 856–863, 2011. View at Publisher · View at Google Scholar
  4. C. S. P. Lam, A. Lyass, E. Kraigher-Krainer et al., “Cardiac dysfunction and noncardiac dysfunction as precursors of heart failure with reduced and preserved ejection fraction in the community,” Circulation, vol. 124, no. 1, pp. 24–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Tschöpe and W. J. Paulus, “Is echocardiographic evaluation of diastolic function useful in determining clinical care? Doppler echocardiography yields dubious estimates of left ventricular diastolic pressures,” Circulation, vol. 120, no. 9, pp. 810–819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. F. Nagueh, C. P. Appleton, T. C. Gillebert et al., “Recommendations for the evaluation of left ventricular diastolic function by echocardiography,” Journal of the American Society of Echocardiography, vol. 22, no. 2, pp. 107–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. C. Little and J. K. Oh, “Echocardiographic evaluation of diastolic function can be used to guide clinical care,” Circulation, vol. 120, no. 9, pp. 802–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. O. Ogunyankin, “Assessment of left ventricular diastolic function: the power, possibilities, and pitfalls of echocardiographic imaging techniques,” Canadian Journal of Cardiology, vol. 27, no. 3, pp. 311–318, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. A. Nishimura and A. J. Tajik, “Evaluation of diastolic filling of left ventricle in health and disease: doppler echocardiography is the clinician's Rosetta Stone,” Journal of the American College of Cardiology, vol. 30, no. 1, pp. 8–18, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. C. L. Simek, M. D. Feldman, H. L. Haber, C. C. Wu, A. R. Jayaweera, and S. Kaul, “Relationship between left ventricular wall thickness and left atrial size: comparison with other measures of diastolic function,” Journal of the American Society of Echocardiography, vol. 8, no. 1, pp. 37–47, 1995. View at Google Scholar · View at Scopus
  11. J. S. Gottdiener, D. W. Kitzman, G. P. Aurigemma, A. M. Arnold, and T. A. Manolio, “Left atrial volume, geometry, and function in systolic and diastolic heart failure of persons ≥65 years of age (The Cardiovascular Health Study),” The American Journal of Cardiology, vol. 97, no. 1, pp. 83–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Vlachopoulos, K. Aznaouridis, M. F. O'Rourke, M. E. Safar, K. Baou, and C. Stefanadis, “Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis,” European Heart Journal, vol. 31, no. 15, pp. 1865–1871, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. F. U. S. Mattace-Raso, T. J. M. Van Der Cammen, A. Hofman et al., “Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study,” Circulation, vol. 113, no. 5, pp. 657–663, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Laurent, P. Boutouyrie, R. Asmar et al., “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension, vol. 37, no. 5, pp. 1236–1241, 2001. View at Google Scholar · View at Scopus
  15. C. Vlachopoulos, K. Aznaouridis, D. Terentes-Printzios, N. Ioakeimidis, and C. Stefanadis, “Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: a systematic review and meta-analysis,” Hypertension, vol. 60, no. 2, pp. 556–562, 2012. View at Publisher · View at Google Scholar
  16. T. Weber, M. F. O'Rourke, M. Ammer, E. Kvas, C. Punzengruber, and B. Eber, “Arterial stiffness and arterial wave reflections are associated with systolic and diastolic function in patients with normal ejection fraction,” American Journal of Hypertension, vol. 21, no. 11, pp. 1194–1202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. B. A. Borlaug, V. Melenovsky, M. M. Redfield et al., “Impact of arterial load and loading sequence on left ventricular tissue velocities in humans,” Journal of the American College of Cardiology, vol. 50, no. 16, pp. 1570–1577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Guelen, F. U. S. Mattace-Raso, N. M. Van Popele et al., “Aortic stiffness and the balance between cardiac oxygen supply and demand: the Rotterdam Study,” Journal of Hypertension, vol. 26, no. 6, pp. 1237–1243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. R. Starling, D. G. Montgomery, G. B. J. Mancini, and R. A. Walsh, “Load independence of the rate of isovolumic relaxation in man,” Circulation, vol. 76, no. 6, pp. 1274–1281, 1987. View at Google Scholar · View at Scopus
  20. G. Soldatos, K. Jandeleit-Dahm, H. Thomson et al., “Large artery biomechanics and diastolic dysfunctionin patients with Type 2 diabetes,” Diabetic Medicine, vol. 28, no. 1, pp. 54–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. W. P. Abhayaratna, M. E. Barnes, M. F. O'Rourke et al., “Relation of arterial stiffness to left ventricular diastolic function and cardiovascular risk prediction in patients ≥65 years of age,” The American Journal of Cardiology, vol. 98, no. 10, pp. 1387–1392, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. P. C. Hsu, T. H. Lin, C. S. Lee et al., “Mismatch between arterial stiffness increase and left ventricular diastolic dysfunction,” Heart and Vessels, vol. 25, no. 6, pp. 485–492, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Asmar, A. Benetos, J. Topouchian et al., “Assessment of arterial distensibility by automatic pulse wave velocity measurement: validation and clinical application studies,” Hypertension, vol. 26, no. 3, pp. 485–490, 1995. View at Google Scholar · View at Scopus
  24. M. F. O'Rourke and W. W. Nichols, “Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension,” Hypertension, vol. 45, no. 4, pp. 652–658, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. E. Davies, J. Baksi, D. P. Francis et al., “The arterial reservoir pressure increases with aging and is the major determinant of the aortic augmentation index,” American Journal of Physiology, vol. 298, no. 2, pp. H580–H586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. W. W. Nichols, M. F. O'Rouke, and C. Vlackopoulos, McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, Hodder Arnold, London, UK, 2011.
  27. S. W. Rabkin, S. H. Chan, and C. Sweeney, “Ankle-brachial index as an indicator of arterial stiffness in patients without peripheral artery disease,” Angiology, vol. 63, pp. 150–154, 2012. View at Google Scholar
  28. S. W. Rabkin and S. H. Chan, “Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized,” Heart International, vol. 7, p. e5, 2012. View at Google Scholar
  29. R. M. Lang, M. Bierig, R. B. Devereux et al., “Recommendations for chamber quantification: a report from the American Society of Echocardiography's guidelines and standards committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology,” Journal of the American Society of Echocardiography, vol. 18, no. 12, pp. 1440–1463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. T. C. Turin, Y. Kita, N. Rumana et al., “Brachial-ankle pulse wave velocity predicts all-cause mortality in the general population: findings from the Takashima study, Japan,” Hypertension Research, vol. 33, no. 9, pp. 922–925, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Yamashina, H. Tomiyama, K. Takeda et al., “Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement,” Hypertension Research, vol. 25, no. 3, pp. 359–364, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Nakamura, T. Yamashita, J. Yajima et al., “Brachial-ankle pulse wave velocity as a risk stratification index for the short-term prognosis of type 2 diabetic patients with coronary artery disease,” Hypertension Research, vol. 33, no. 10, pp. 1018–1024, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Usui, Y. Takata, Y. Inoue et al., “Severe obstructive sleep apnea impairs left ventricular diastolic function in non-obese men,” Sleep Medicine, vol. 4, p. 4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Xu, C. Q. Jiang, T. H. Lam et al., “Arterial stiffness and left-ventricular diastolic dysfunction: Guangzhou Biobank Cohort Study-CVD,” Journal of Human Hypertension, vol. 25, no. 3, pp. 152–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. C. M. Chung, C. M. Chu, S. T. Chang et al., “Quantification of aortic stiffness to predict the degree of left ventricular diastolic function,” American Journal of the Medical Sciences, vol. 340, no. 6, pp. 468–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Yambe, H. Tomiyama, Y. Hirayama et al., “Arterial stiffening as a possible risk factor for both atherosclerosis and diastolic heart failure,” Hypertension Research, vol. 27, no. 9, pp. 625–631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Masugata, S. Senda, K. Yoshikawa et al., “Relationships between echocardiographic findings, pulse wave velocity, and carotid atherosclerosis in type 2 diabetic patients,” Hypertension Research, vol. 28, no. 12, pp. 965–971, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Soldatos, K. Jandeleit-Dahm, H. Thomson et al., “Large artery biomechanics and diastolic dysfunctionin patients with type 2 diabetes,” Diabetic Medicine, vol. 28, no. 1, pp. 54–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Triantafyllidi, S. Tzortzis, J. Lekakis et al., “Association of target organ damage with three arterial stiffness indexes according to blood pressure dipping status in untreated hypertensive patients,” American Journal of Hypertension, vol. 23, no. 12, pp. 1265–1272, 2010. View at Google Scholar · View at Scopus
  40. C. Tsioufis, D. Chatzis, K. Dimitriadis et al., “Left ventricular diastolic dysfunction is accompanied by increased aortic stiffness in the early stages of essential hypertension: a TDI approach,” Journal of Hypertension, vol. 23, no. 9, pp. 1745–1750, 2005. View at Google Scholar · View at Scopus
  41. C. D. Libhaber, G. R. Norton, O. H. I. Majane et al., “Contribution of central and general adiposity to abnormal left ventricular diastolic function in a community sample with a high prevalence of obesity,” The American Journal of Cardiology, vol. 104, no. 11, pp. 1527–1533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Tanaka, M. Munakata, Y. Kawano et al., “Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness,” Journal of Hypertension, vol. 27, no. 10, pp. 2022–2027, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Sugawara, K. Hayashi, T. Yokoi et al., “Brachial-ankle pulse wave velocity: an index of central arterial stiffness?” Journal of Human Hypertension, vol. 19, no. 5, pp. 401–406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Munakata, N. Ito, T. Nunokawa, and K. Yoshinaga, “Utility of automated brachial ankle pulse wave velocity measurements in hypertensive patients,” American Journal of Hypertension, vol. 16, no. 8, pp. 653–657, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. J. N. Cooper, J. M. Buchanich, A. Youk et al., “Reductions in arterial stiffness with weight loss in overweight and obese young adults: potential mechanisms,” Atherosclerosis, vol. 223, no. 2, pp. 485–490, 2012. View at Publisher · View at Google Scholar
  46. C. P. Wang, W. C. Hung, T. H. Yu et al., “Brachial-ankle pulse wave velocity as an early indicator of left ventricular diastolic function among hypertensive subjects,” Clinical and Experimental Hypertension, vol. 31, no. 1, pp. 31–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. G. F. Mitchell, H. Parise, E. J. Benjamin et al., “Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study,” Hypertension, vol. 43, no. 6, pp. 1239–1245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Benetos, B. Waeber, J. Izzo et al., “Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: clinical applications,” American Journal of Hypertension, vol. 15, no. 12, pp. 1101–1108, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. P. V. Vaitkevicius, J. L. Fleg, J. H. Engel et al., “Effects of age and aerobic capacity on arterial stiffness in healthy adults,” Circulation, vol. 88, no. 4, pp. 1456–1462, 1993. View at Google Scholar · View at Scopus
  50. S. S. Franklin, “Arterial stiffness and hypertension: a two-way street?” Hypertension, vol. 45, no. 3, pp. 349–351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. O'Rourke, “Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension,” Hypertension, vol. 15, no. 4, pp. 339–347, 1990. View at Google Scholar · View at Scopus
  52. P. S. Douglas, “The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk,” Journal of the American College of Cardiology, vol. 42, no. 7, pp. 1206–1207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. W. C. Yu, S. Y. Chuang, Y. P. Lin, and C. H. Chen, “Brachial-ankle vs carotid-femoral pulse wave velocity as a determinant of cardiovascular structure and function,” Journal of Human Hypertension, vol. 22, no. 1, pp. 24–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Nakae, S. Matsuo, T. Matsumoto, K. Mitsunami, and M. Horie, “Augmentation index and pulse wave velocity as indicators of cardiovascular stiffness,” Angiology, vol. 59, no. 4, pp. 421–426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. I. Ikonomidis, J. Lekakis, C. Papadopoulos et al., “Incremental value of pulse wave velocity in the determination of coronary microcirculatory dysfunction in never-treated patients with essential hypertension,” American Journal of Hypertension, vol. 21, no. 7, pp. 806–813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Weber, J. Auer, M. F. O'Rourke, C. Punzengruber, E. Kvas, and B. Eber, “Prolonged mechanical systole and increased arterial wave reflections in diastolic dysfunction,” Heart, vol. 92, no. 11, pp. 1616–1622, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Laurent and P. Boutouyrie, “Recent advances in arterial stiffness and wave reflection in human hypertension,” Hypertension, vol. 49, no. 6, pp. 1202–1206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. W. P. Abhayaratna, W. Srikusalanukul, and M. M. Budge, “Aortic stiffness for the detection of preclinical left ventricular diastolic dysfunction: pulse wave velocity versus pulse pressure,” Journal of Hypertension, vol. 26, no. 4, pp. 758–764, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Matsui, K. Eguchi, M. F. O'Rourke et al., “Differential effects between a calcium channel blocker and a diuretic when used in combination with angiotensin II receptor blocker on central aortic pressure in hypertensive patients,” Hypertension, vol. 54, no. 4, pp. 716–723, 2009. View at Publisher · View at Google Scholar · View at Scopus