Table of Contents
Developmental Biology Journal
Volume 2013 (2013), Article ID 131529, 8 pages
http://dx.doi.org/10.1155/2013/131529
Research Article

Targeted Disruption of Calcium/NFAT Signaling Reveals a Left-Right Determination Disorder in the Pharyngeal Arch Artery

Laboratory for Occupational Safety and Health, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita 565-8565, Japan

Received 7 December 2012; Accepted 18 February 2013

Academic Editor: Tetsuya Kojima

Copyright © 2013 Yukihisa Miyachi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Mukaigasa, A. Hanasaki, M. Maéno et al., “The keratin-related Ouroboros proteins function as immune antigens mediating tail regression in Xenopus metamorphosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 43, pp. 18309–18314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Kanao and Y. Miyachi, “Lymphangiogenesis promotes lens destruction and subsequent lens regeneration in the newt eyeball, and both processes can be accelerated by transplantation of dendritic cells,” Developmental Biology, vol. 290, no. 1, pp. 118–124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Hiruma and Y. Nakajima, “Development of pharyngeal arch arteries in early mouse embryo,” Journal of Anatomy, vol. 201, no. 1, pp. 15–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. G. R. Crabtree, “Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT,” Cell, vol. 96, no. 5, pp. 611–614, 1999. View at Google Scholar · View at Scopus
  5. C. Cursiefen, L. Chen, L. P. Borges et al., “VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment,” Journal of Clinical Investigation, vol. 113, no. 7, pp. 1040–1050, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. Boisset, W. Van Cappellen, C. Andrieu-Soler, N. Galjart, E. Dzierzak, and C. Robin, “In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium,” Nature, vol. 464, no. 7285, pp. 116–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Capdevila, K. J. Vogan, C. J. Tabin, and J. C. Izpisúa Belmonte, “Mechanisms of left-right determination in vertebrates,” Cell, vol. 101, no. 1, pp. 9–21, 2000. View at Google Scholar · View at Scopus
  8. X. Yuan, P. Simpson, C. McKeown et al., “Structure, dynamics and interactions of p47, a major adaptor of the AAA ATPase, p97,” The EMBO Journal, vol. 23, no. 7, pp. 1463–1473, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Shiratori and H. Hamada, “The left-right axis in the mouse: from origin to morphology,” Development, vol. 133, no. 11, pp. 2095–2104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. McGrath, S. Somlo, S. Makova, X. Tian, and M. Brueckner, “Two populations of node monocilia initiate left-right asymmetry in the mouse,” Cell, vol. 114, no. 1, pp. 61–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Tanaka, Y. Okada, and N. Hirokawa, “FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination,” Nature, vol. 435, no. 7039, pp. 172–177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Hatayama, K. Mikoshiba, and J. Aruga, “IP3 signaling is required for cilia formation and left-right body axis determination in Xenopus embryos,” Biochemical and Biophysical Research Communications, vol. 410, no. 3, pp. 520–524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Levin, T. Thorlin, K. R. Robinson, T. Nogi, and M. Mercola, “Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning,” Cell, vol. 111, no. 1, pp. 77–89, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. B. Helliwell, P. Wagner, J. Kunz, M. Deuter-Reinhard, R. Henriquez, and M. N. Hall, “TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast,” Molecular Biology of the Cell, vol. 5, no. 1, pp. 105–118, 1994. View at Google Scholar · View at Scopus