Table of Contents
Developmental Biology Journal
Volume 2013 (2013), Article ID 632524, 12 pages
http://dx.doi.org/10.1155/2013/632524
Review Article

The Dormancy Marker DRM1/ARP Associated with Dormancy but a Broader Role In Planta

1The New Zealand Institute for Plant & Food Research Limited, Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
2Plant Molecular Sciences, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand

Received 28 February 2013; Revised 15 May 2013; Accepted 16 May 2013

Academic Editor: M. Pisano

Copyright © 2013 Georgina M. Rae et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Lang, J. D. Early, G. C. Martin, and R. L. Darnell, “Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research,” HortScience, vol. 22, no. 3, pp. 371–377, 1987. View at Google Scholar
  2. K. V. Thimann and F. Skoog, “On the inhibition of bud development and other functions of growth substances in Vicia faba,” Proceedings of the Royal Society of London, vol. 114, no. 789, pp. 317–339, 1934. View at Publisher · View at Google Scholar
  3. M. A. Domagalska and O. Leyser, “Signal integration in the control of shoot branching,” Nature Reviews Molecular Cell Biology, vol. 12, no. 4, pp. 211–221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Seto, H. Kameoka, S. Yamaguchi, and J. Kyozuka, “Recent advances in strigolactone research: chemical and biological aspects,” Plant and Cell Physiology, vol. 53, no. 11, pp. 1843–1853, 2012. View at Publisher · View at Google Scholar
  5. J. P. Stafstrom, B. D. Ripley, M. L. Devitt, and B. Drake, “Dormancy-associated gene expression in pea axillary buds. Cloning and expression of PsDRM1 and PsDRM2,” Planta, vol. 205, no. 4, pp. 547–552, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Tatematsu, S. Ward, O. Leyser, Y. Kamiya, and E. Nambara, “Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis,” Plant Physiology, vol. 138, no. 2, pp. 757–766, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Wood, G. M. Rae, R.-M. Wu et al., “Actinidia DRM1—an intrinsically disordered protein whose mRNA expression is inversely correlated with spring budbreak in kiwifruit,” PLoS ONE, vol. 8, no. 3, Article ID e57354, 2013. View at Google Scholar
  8. D. P. Horvath, J. V. Anderson, W. S. Chao, and M. E. Foley, “Knowing when to grow: signals regulating bud dormancy,” Trends in Plant Science, vol. 8, no. 11, pp. 534–540, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Huang, T. Xue, S. Dai, S. Gai, C. Zheng, and G. Zheng, “Genes associated with the release of dormant buds in tree peonies (Paeonia suffruticosa),” Acta Physiologiae Plantarum, vol. 30, no. 6, pp. 797–806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. A. Finlayson, S. R. Krishnareddy, T. H. Kebrom, and J. J. Casal, “Phytochrome regulation of branching in Arabidopsis,” Plant Physiology, vol. 152, no. 4, pp. 1914–1927, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. H. Kebrom, P. M. Chandler, S. M. Swain, R. W. King, R. A. Richards, and W. Spielmeyer, “Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development,” Plant Physiology, vol. 160, no. 1, pp. 308–318, 2012. View at Publisher · View at Google Scholar
  12. L. Mlynárová, J.-P. Nap, and T. Bisseling, “The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress,” The Plant Journal, vol. 51, no. 5, pp. 874–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Finlayson, “Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1,” Plant and Cell Physiology, vol. 48, no. 5, pp. 667–677, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Govind, H. Vokkaliga Thammegowda, P. Jayaker Kalaiarasi et al., “Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut,” Molecular Genetics and Genomics, vol. 281, no. 6, pp. 591–605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Soeda, M. C. J. M. Konings, O. Vorst et al., “Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level,” Plant Physiology, vol. 137, no. 1, pp. 354–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Lee, C.-T. Han, and Y. Hur, “Molecular characterization of the Brassica rapa auxin-repressed, superfamily genes, BrARP1 and BrDRM1,” Molecular Biology Reports, vol. 40, no. 1, pp. 197–209, 2013. View at Publisher · View at Google Scholar
  17. E. W. Hwang, K. A. Kim, S. C. Park, M. J. Jeong, M. O. Byun, and H. B. Kwon, “Expression profiles of hot pepper (Capsicum annuum) genes under cold stress conditions,” Journal of Biosciences, vol. 30, no. 5, pp. 657–667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. B. Kim, H. Lee, C. J. Oh, N. H. Lee, and C. S. An, “Expression of EuNOD-ARP1 encoding auxin-repressed protein homolog is upregulated by auxin and localized to the fixation zone in root nodules of Elaeagnus umbellata,” Molecules and Cells, vol. 23, no. 1, pp. 115–121, 2007. View at Google Scholar · View at Scopus
  19. A. S. N. Reddy and B. W. Poovaiah, “Molecular cloning and sequencing of a cDNA for an auxin-repressed mRNA: correlation between fruit growth and repression of the auxin-regulated gene,” Plant Molecular Biology, vol. 14, no. 2, pp. 127–136, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. Lee, R. C. Gardner, and M. Lay-Yee, “An apple gene highly expressed in fruit,” Plant Physiology, vol. 103, no. 3, p. 1017, 1993. View at Google Scholar · View at Scopus
  21. S. Chakravarthy, A. C. Velásquez, S. K. Ekengren, A. Collmer, and G. B. Martin, “Identification of Nicotiana benthamiana genes involved in pathogen-associated molecular pattern-triggered immunity,” Molecular Plant-Microbe Interactions, vol. 23, no. 6, pp. 715–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Steiner, J. Bauer, N. Amrhein, and M. Bucher, “Two novel genes are differentially expressed during early germination of the male gametophyte of Nicotiana tabacum,” Biochimica et Biophysica Acta, vol. 1625, no. 2, pp. 123–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. P. Stafstrom, “Regulation of growth and dormancy in pea axillary buds,” in Dormancy in Plants, J.-D. Viemont and J. Crabbé, Eds., pp. 331–346, CAB International, Wallingford, UK, 2000. View at Google Scholar
  24. H.-Y. Shi, Y.-X. Zhang, and L. Chen, “Two pear auxin-repressed protein genes, PpARP1 and PpARP2, are predominantly expressed in fruit and involved in response to salicylic acid signaling,” Plant Cell, Tissue and Organ Culture, pp. 1–8, 2013. View at Publisher · View at Google Scholar
  25. S. Park and K. Han, “An auxin-repressed gene (RpARP) from black locust (Robinia pseudoacacia) is posttranscriptionally regulated and negatively associated with shoot elongation,” Tree Physiology, vol. 23, no. 12, pp. 815–823, 2003. View at Google Scholar · View at Scopus
  26. W. H. Vriezen, R. Feron, F. Maretto, J. Keijman, and C. Mariani, “Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set,” New Phytologist, vol. 177, no. 1, pp. 60–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. H. Kebrom, B. L. Burson, and S. A. Finlayson, “Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals,” Plant Physiology, vol. 140, no. 3, pp. 1109–1117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. T. H. Kebrom, T. P. Brutnell, and S. A. Finlayson, “Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways,” Plant, Cell and Environment, vol. 33, no. 1, pp. 48–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. K. Dunker, J. D. Lawson, C. J. Brown et al., “Intrinsically disordered protein,” Journal of Molecular Graphics and Modelling, vol. 19, no. 1, pp. 26–59, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. L. M. Iakoucheva, C. J. Brown, J. D. Lawson, Z. Obradović, and A. K. Dunker, “Intrinsic disorder in cell-signaling and cancer-associated proteins,” Journal of Molecular Biology, vol. 323, no. 3, pp. 573–584, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Minezaki, K. Homma, A. R. Kinjo, and K. Nishikawa, “Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation,” Journal of Molecular Biology, vol. 359, no. 4, pp. 1137–1149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Garay-Arroyo, J. M. Colmenero-Flores, A. Garciarrubio, and A. A. Covarrubias, “Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit,” The Journal of Biological Chemistry, vol. 275, no. 8, pp. 5668–5674, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Mouillon, P. Gustafsson, and P. Harryson, “Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments,” Plant Physiology, vol. 141, no. 2, pp. 638–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Chakrabortee, C. Boschetti, L. J. Walton, S. Sarkar, D. C. Rubinsztein, and A. Tunnacliffe, “Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 46, pp. 18073–18078, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Kovacs, B. Agoston, and P. Tompa, “Disordered plant LEA proteins as molecular chaperones,” Plant Signaling and Behavior, vol. 3, no. 9, pp. 710–713, 2008. View at Google Scholar · View at Scopus
  36. D. Kovacs, E. Kalmar, Z. Torok, and P. Tompa, “Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins,” Plant Physiology, vol. 147, no. 1, pp. 381–390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Petersen, S. K. Eriksson, P. Harryson et al., “The lysine-rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum is responsible for phosphatidic acid binding and protection of enzymes from damaging effects caused by desiccation,” Journal of Experimental Botany, vol. 63, no. 13, pp. 4919–4929, 2012. View at Publisher · View at Google Scholar
  38. G. S. Ross, M. L. Knighton, and M. Lay-Yee, “An ethylene-related cDNA from ripening apples,” Plant Molecular Biology, vol. 19, no. 2, pp. 231–238, 1992. View at Publisher · View at Google Scholar · View at Scopus
  39. H. R. Woo, K. M. Chung, J. H. Park et al., “ORE9, an F-box protein that regulates leaf senescence in Arabidopsis,” Plant Cell, vol. 13, no. 8, pp. 1779–1790, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Breeze, E. Harrison, S. McHattie et al., “High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation,” Plant Cell, vol. 23, no. 3, pp. 873–894, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Madoka and H. Mori, “Two novel transcripts expressed in pea dormant axillary buds,” Plant and Cell Physiology, vol. 41, no. 3, pp. 274–281, 2000. View at Google Scholar · View at Scopus
  42. J. D. Bewley, “Seed germination and dormancy,” Plant Cell, vol. 9, no. 7, pp. 1055–1066, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. G. M. Simpson, Seed Dormancy in Grasses, Cambridge University Press, Cambridge, UK, 1990.
  44. A. Rohde and R. P. Bhalerao, “Plant dormancy in the perennial context,” Trends in Plant Science, vol. 12, no. 5, pp. 217–223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Schmid, T. S. Davison, S. R. Henz et al., “A gene expression map of Arabidopsis thaliana development,” Nature Genetics, vol. 37, no. 5, pp. 501–506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. J. M. Barrero, M. J. Talbot, R. G. White, J. V. Jacobsen, and F. Gubler, “Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in Barley,” Plant Physiology, vol. 150, no. 2, pp. 1006–1021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. E. M. Beyer and P. W. Morgan, “Effect of ethylene on the uptake, distribution, and metabolism of indoleacetic acid-1-14C and -2-14C and naphthaleneacetic acid-1-14C,” Plant Physiology, vol. 46, no. 1, pp. 157–162, 1970. View at Publisher · View at Google Scholar
  48. Y. Izumi, A. Okazawa, T. Bamba, A. Kobayashi, and E. Fukusaki, “Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry,” Analytica Chimica Acta, vol. 648, no. 2, pp. 215–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Gil and P. J. Green, “Multiple regions of the Arabidopsis SAUR-AC1 gene control transcript abundance: the 3 untranslated region functions as an mRNA instability determinant,” The EMBO Journal, vol. 15, no. 7, pp. 1678–1686, 1996. View at Google Scholar · View at Scopus
  50. C. Y. A. Chen and A. B. Shyu, “AU-rich elements: characterization and importance in mRNA degradation,” Trends in Biochemical Sciences, vol. 20, no. 11, pp. 465–470, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Abel and A. Theologis, “Early genes and auxin action,” Plant Physiology, vol. 111, no. 1, pp. 9–17, 1996. View at Google Scholar · View at Scopus
  52. J. L. Key, N. M. Barnett, and C. Y. Lin, “RNA and protein biosynthesis and the regulation of cell elongation by auxin,” Annals of the New York Academy of Sciences, vol. 144, no. 1, pp. 49–62, 1967. View at Google Scholar · View at Scopus
  53. A. Theologis, T. V. Huynh, and R. W. Davis, “Rapid induction of specific mRNAs by auxin in pea epicotyl tissue,” Journal of Molecular Biology, vol. 183, no. 1, pp. 53–68, 1985. View at Google Scholar · View at Scopus
  54. A. Theologis and P. M. Ray, “Early auxin-regulated polyadenylylated mRNA sequences in pea stem tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 2, pp. 418–421, 1982. View at Google Scholar · View at Scopus
  55. Y. Zhao, S. K. Christensen, C. Fankhauser et al., “A role for flavin monooxygenase-like enzymes in auxin biosynthesis,” Science, vol. 291, no. 5502, pp. 306–309, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. D. L. Lindsay, Cytokinin-induced gene expression in Arabidopsis [Degree of doctor of philosophy], Department of Biology, University of Saskatchewan, Saskatoon,Canada, 2006.
  57. J. M. S. Healy, M. Menges, J. H. Doonan, and J. A. H. Murray, “The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differentially controlled,” The Journal of Biological Chemistry, vol. 276, no. 10, pp. 7041–7047, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. E. A. Oakenfull, C. Riou-Khamlichi, and J. A. H. Murray, “Plant D-type cyclins and the control of G1 progression,” Philosophical Transactions of the Royal Society B, vol. 357, no. 1422, pp. 749–760, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. W. S. Chao and M. D. Serpe, “Changes in the expression of carbohydrate metabolism genes during three phases of bud dormancy in leafy spurge,” Plant Molecular Biology, vol. 73, no. 1-2, pp. 227–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. C. A. Lu, E. K. Lim, and S. M. Yu, “Sugar response sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer,” The Journal of Biological Chemistry, vol. 273, no. 17, pp. 10120–10131, 1998. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Nambara, M. Okamoto, K. Tatematsu, R. Yano, M. Seo, and Y. Kamiya, “Abscisic acid and the control of seed dormancy and germination,” Seed Science Research, vol. 20, no. 2, pp. 55–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Gonzali, E. Loreti, C. Solfanelli, G. Novi, A. Alpi, and P. Perata, “Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis,” Journal of Plant Research, vol. 119, no. 2, pp. 115–123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. A. C. Richardson, E. F. Walton, H. L. Boldingh, and J. S. Meekings, “Seasonal carbohydrate changes in dormant kiwifruit buds,” in Proceedings of the 6th International Symposium on Kiwifruit, vol. 753, pp. 567–572, 2007.