Discrete Dynamics in Nature and Society

Discrete Dynamics in Nature and Society / 2007 / Article

Research Article | Open Access

Volume 2007 |Article ID 045920 | https://doi.org/10.1155/2007/45920

G. Pastor, M. Romera, G. Alvarez, J. Nunez, D. Arroyo, F. Montoya, "Operating with External Arguments of Douady and Hubbard", Discrete Dynamics in Nature and Society, vol. 2007, Article ID 045920, 17 pages, 2007. https://doi.org/10.1155/2007/45920

Operating with External Arguments of Douady and Hubbard

Received22 May 2007
Accepted22 Sep 2007
Published30 Dec 2007

Abstract

The external arguments of the external rays theory of Douady and Hubbard is a valuable tool in order to analyze the Mandelbrot set, a typical case of discrete dynamical system used to study nonlinear phenomena. We suggest here a general method for the calculation of the external arguments of external rays landing at the hyperbolic components root points of the Mandelbrot set. Likewise, we present a general method for the calculation of the external arguments of external rays landing at Misiurewicz points.

References

  1. B. Branner, “The Mandelbrot set,” in Chaos and Fractals, vol. 39 of Proceedings Symposium Applied Mathematics, pp. 75–105, American Mathematical Society, Providence, RI, USA, 1989. View at: Google Scholar | MathSciNet
  2. M. Misiurewicz and Z. Nitecki, “Combinatorial patterns for maps of the interval,” Memoirs of the American Mathematical Society, vol. 94, no. 456, p. 112, 1991. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  3. G. Pastor, M. Romera, and F. Montoya, “On the calculation of Misiurewicz patterns in one-dimensional quadratic maps,” Physica A, vol. 232, no. 1-2, pp. 536–553, 1996. View at: Publisher Site | Google Scholar
  4. M. Romera, G. Pastor, and F. Montoya, “Misiurewicz points in one-dimensional quadratic maps,” Physica A, vol. 232, no. 1-2, pp. 517–535, 1996. View at: Publisher Site | Google Scholar
  5. G. Pastor, M. Romera, G. Alvarez, and F. Montoya, “Operating with external arguments in the Mandelbrot set antenna,” Physica D, vol. 171, no. 1-2, pp. 52–71, 2002. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  6. G. Pastor, M. Romera, G. Alvarez, and F. Montoya, “External arguments for the chaotic bands calculation in the Mandelbrot set,” Physica A, vol. 353, pp. 145–158, 2005. View at: Publisher Site | Google Scholar
  7. A. Douady and J. H. Hubbard, “Itération des polynômes quadratiques complexes,” Comptes Rendus des Séances de l'Académie des Sciences, vol. 294, no. 3, pp. 123–126, 1982. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  8. G. Pastor, M. Romera, and F. Montoya, “Harmonic structure of one-dimensional quadratic maps,” Physical Review E, vol. 56, no. 2, pp. 1476–1483, 1997. View at: Publisher Site | Google Scholar
  9. W. Jung, Programs for dynamical systems, http://www.iram.rwth-aachen.de/~jung/indexp.html.
  10. R. L. Devaney, “The complex dynamics of quadratic polynomials,” in Complex Dynamical Systems, R. L. Devaney, Ed., vol. 49 of Proceedings Symposium Applied Mathematics, pp. 1–29, American Mathematical Society, Cincinnati, Ohio, USA, 1994. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  11. A. Douady, “Algorithms for computing angles in the Mandelbrot set,” in Chaotic Dynamics and Fractals, M. Barnsley and S. G. Demko, Eds., vol. 2 of Notes and Reports in Mathematics in Science and Engineering, pp. 155–168, Academic Press, Atlanta, Ga, USA, 1986. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  12. M. Romera, G. Pastor, G. Alvarez, and F. Montoya, “Shrubs in the Mandelbrot set ordering,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 13, no. 8, pp. 2279–2300, 2003. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  13. G. Pastor, M. Romera, G. Alvarez, D. Arroyo, and F. Montoya, “Equivalence between subshrubs and chaotic bands in the Mandelbrot set,” Discrete Dynamics in Nature and Society, vol. 2006, Article ID 70471, 25 pages, 2006. View at: Google Scholar | MathSciNet
  14. E. Lau and D. Schleicher, “Internal addresses in the Mandelbrot set and irreducibility of polynomials,” http://www.math.sunysb.edu/cgi-bin/preprint.pl?ims94-19. View at: Google Scholar

Copyright © 2007 G. Pastor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views146
Downloads642
Citations

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.