`Discrete Dynamics in Nature and SocietyVolume 2007, Article ID 75262, 10 pageshttp://dx.doi.org/10.1155/2007/75262`
Research Article

## On the Difference Equation xn+1=∑j=0kajfj(xn−j)

Mathematical Institute of the Serbian Academy of Science, Knez Mihailova 35/I, Beograd 11000, Serbia

Received 25 February 2007; Accepted 16 June 2007

Copyright © 2007 Stevo Stević. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. K. S. Berenhaut, J. D. Foley, and S. Stević, “Quantitative bounds for the recursive sequence ${y}_{n+1}=A+{y}_{n}/{y}_{n-k}$,” Applied Mathematics Letters, vol. 19, no. 9, pp. 983–989, 2006.
2. K. S. Berenhaut and S. Stević, “The behaviour of the positive solutions of the difference equation ${x}_{n}=A+{\left({x}_{n-2}/{x}_{n-1}\right)}^{p}$,” Journal of Difference Equations and Applications, vol. 12, no. 9, pp. 909–918, 2006.
3. B. Dai and X. Zou, “Permanence for a class of nonlinear difference systems,” Discrete Dynamics in Nature and Society, vol. 2006, Article ID 78607, p. 10, 2006.
4. R. DeVault, G. Ladas, and S. W. Schultz, “Necessary and sufficient conditions for the boundedness of ${x}_{n+1}=A/{x}_{n}^{p}+B/{x}_{n-1}^{q}$,” Journal of Difference Equations and Applications, vol. 3, no. 3-4, pp. 259–266, 1998.
5. H. M. El-Owaidy, A. A. Ragab, and M. M. El-Afifi, “On the recursive sequence ${x}_{n+1}=A/{x}_{n}^{p}+B/{x}_{n-1}^{q}+C/{x}_{n-2}^{s}$,” Applied Mathematics and Computation, vol. 112, no. 2-3, pp. 277–290, 2000.
6. H. M. El-Owaidy, A. M. Ahmed, and M. S. Mousa, “On asymptotic behaviour of the difference equation ${x}_{n+1}=\alpha +\left({x}_{n-1}^{p}/{x}_{n}^{p}\right)$,” Journal of Applied Mathematics & Computing, vol. 12, no. 1-2, pp. 31–37, 2003.
7. G. L. Karakostas, “A discrete semi-flow in the space of sequences and study of convergence of sequenses defined by difference equations,” M. E. Greek Math. Soc., vol. 30, pp. 66–74, 1989.
8. G. L. Karakostas, “Convergence of a difference equation via the full limiting sequences method,” Differential Equations and Dynamical Systems, vol. 1, no. 4, pp. 289–294, 1993.
9. G. L. Karakostas and S. Stević, “On the difference equation ${x}_{n+1}=Af\left({x}_{n}\right)+f\left({x}_{n-1}\right)$,” Applicable Analysis, vol. 83, no. 3, pp. 309–323, 2004.
10. Ch. G. Philos, I. K. Purnaras, and Y. G. Sficas, “Global attractivity in a nonlinear difference equation,” Applied Mathematics and Computation, vol. 62, no. 2-3, pp. 249–258, 1994.
11. S. Stević, “On the recursive sequence ${x}_{n+1}=-1/{x}_{n}+A/{x}_{n-1}$,” International Journal of Mathematics and Mathematical Sciences, vol. 27, no. 1, pp. 1–6, 2001.
12. S. Stević, “A note on the difference equation ${x}_{n+1}={\sum }_{j=0}^{k}{\alpha }_{i}/{x}_{n-i}^{{p}_{i}}$,” Journal of Difference Equations and Applications, vol. 8, no. 7, pp. 641–647, 2002.
13. S. Stević, “A global convergence results with applications to periodic solutions,” Indian Journal of Pure and Applied Mathematics, vol. 33, no. 1, pp. 45–53, 2002.
14. S. Stević, “On the recursive sequence ${x}_{n+1}=A/{\prod }_{i=0}^{k}{x}_{n-i}+1/{\prod }_{j=k+2}^{2\left(k+1\right)}{x}_{n-j}$,” Taiwanese Journal of Mathematics, vol. 7, no. 2, pp. 249–259, 2003.
15. S. Stević, “On the recursive sequence ${x}_{n+1}=\alpha +{x}_{n-1}^{p}/{x}_{n}^{p}$,” Journal of Applied Mathematics & Computing, vol. 18, no. 1-2, pp. 229–234, 2005.
16. S. Stević, “On the recursive sequence ${x}_{n+1}=\alpha +\beta {x}_{n-k}/f\left({x}_{n},\dots ,{x}_{n-k+1}\right)$,” Taiwanese Journal of Mathematics, vol. 9, no. 4, pp. 583–593, 2005.
17. S. Stević, “On the recursive sequence ${x}_{n}=1+{\sum }_{i=1}^{k}{\alpha }_{i}{x}_{n-{p}_{i}}/{\sum }_{j=1}^{m}{\beta }_{j}{x}_{n-{q}_{j}}$,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 39404, p. 7, 2007.
18. S. Stević, “On the recursive sequence ${x}_{n+1}=A+{x}_{n}^{p}/{x}_{n-1}^{p}$,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 34517, p. 9, 2007.
19. T. Sun, H. Xi, and H. Wu, “On boundedness of the solutions of the difference equation ${x}_{n+1}={x}_{n-1}/\left(p+{x}_{n}\right)$,” Discrete Dynamics in Nature and Society, vol. 2006, Article ID 20652, p. 7, 2006.
20. S.-E. Takahasi, Y. Miura, and T. Miura, “On convergence of a recursive sequence ${x}_{n+1}=f\left({x}_{n-1},{x}_{n}\right)$,” Taiwanese Journal of Mathematics, vol. 10, no. 3, pp. 631–638, 2006.