Abstract

Using the fixed point method, we investigate the stability of the systems of quadratic-cubic and additive-quadratic-cubic functional equations with constant coefficients form r-divisible groups into Ŝerstnev probabilistic Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations started with the following question concerning stability of group homomorphisms proposed by Ulam [1] during a talk before a Mathematical Colloquium at the University of Wisconsin, Madison, in 1940.

Let (𝐺1,β‹…) be a group and (𝐺2,βˆ—) a metric group with the metric 𝑑(β‹…,β‹…). Given πœ–>0, does there exist a 𝛿>0 such that if a mapping β„ŽβˆΆπΊ1→𝐺2 satisfies the inequality 𝑑(β„Ž(π‘₯⋅𝑦),β„Ž(π‘₯)βˆ—β„Ž(𝑦))<𝛿 for all π‘₯,π‘¦βˆˆπΊ1, then there exists a homomorphism 𝐻∢𝐺1→𝐺2 with 𝑑(β„Ž(π‘₯),𝐻(π‘₯))<πœ– for all π‘₯∈𝐺1?

In 1941, Hyers [2] gave a first affirmative answer to the question of Ulam for Banach spaces as follows.

If 𝐸 and πΈξ…ž are Banach spaces and π‘“βˆΆπΈβ†’πΈξ…ž is a mapping for which there is πœ€>0 such that ‖𝑓(π‘₯+𝑦)βˆ’π‘“(π‘₯)βˆ’π‘“(𝑦)β€–β‰€πœ€ for all π‘₯,π‘¦βˆˆπΈ, then there is a unique additive mapping πΏβˆΆπΈβ†’πΈξ…ž such that ‖𝑓(π‘₯)βˆ’πΏ(π‘₯)β€–β‰€πœ€ for all π‘₯∈𝐸.

Hyers’ Theorem was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference, respectively.

The paper of Rassias [5] has provided a lot of influence in the development of what we now call the generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability of functional equations. In 1994, a generalization of the Rassias theorem was obtained by GΔƒvruΕ£a [6] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach. For more details about the results concerning such problems, the reader is referred to [4, 5, 7–21, 21–30].

The functional equation𝑓(π‘₯+𝑦)+𝑓(π‘₯βˆ’π‘¦)=2𝑓(π‘₯)+2𝑓(𝑦)(1.1) is related to a symmetric biadditive function [31, 32]. It is natural that this equation is called a quadratic functional equation. In particular, every solution of the quadratic equation (1.1) is called a quadratic function. The Hyers-Ulam stability problem for the quadratic functional equation was solved by Skof [33]. In [8], Czerwik proved the Hyers-Ulam-Rassias stability of (1.1). Eshaghi Gordji and Khodaei [34] obtained the general solution and the generalized Hyers-Ulam-Rassias stability of the following quadratic functional equation: for all π‘Ž,π‘βˆˆβ„€β§΅{0} with π‘Žβ‰ Β±1,±𝑏,𝑓(π‘Žπ‘₯+𝑏𝑦)+𝑓(π‘Žπ‘₯βˆ’π‘π‘¦)=2π‘Ž2𝑓(π‘₯)+2𝑏2𝑓(𝑦).(1.2)

Jun and Kim [35] introduced the following cubic functional equation:𝑓(2π‘₯+𝑦)+𝑓(2π‘₯βˆ’π‘¦)=2𝑓(π‘₯+𝑦)+2𝑓(π‘₯βˆ’π‘¦)+12𝑓(π‘₯),(1.3) and they established the general solution and the generalized Hyers-Ulam-Rassias stability for the functional equation (1.3). Jun et al. [36] investigated the solution and the Hyers-Ulam stability for the cubic functional equation𝑓(π‘Žπ‘₯+𝑏𝑦)+𝑓(π‘Žπ‘₯βˆ’π‘π‘¦)=π‘Žπ‘2ξ€·π‘Ž(𝑓(π‘₯+𝑦)+𝑓(π‘₯βˆ’π‘¦))+2π‘Ž2βˆ’π‘2𝑓(π‘₯),(1.4) where π‘Ž,π‘βˆˆβ„€β§΅{0} with π‘Žβ‰ Β±1,±𝑏. For other cubic functional equations, see [37].

Lee et al. [38] considered the following functional equation:𝑓(2π‘₯+𝑦)+𝑓(2π‘₯βˆ’π‘¦)=4𝑓(π‘₯+𝑦)+4𝑓(π‘₯βˆ’π‘¦)+24𝑓(π‘₯)βˆ’6𝑓(𝑦).(1.5)

In fact, they proved that a function 𝑓 between two real vector spaces 𝑋 and π‘Œ is a solution of (1.5) if and only if there exists a unique symmetric biquadratic function 𝐡2βˆΆπ‘‹Γ—π‘‹β†’π‘Œ such that 𝑓(π‘₯)=𝐡2(π‘₯,π‘₯) for all π‘₯βˆˆπ‘‹. The bi-quadratic function 𝐡2 is given by 𝐡21(π‘₯,𝑦)=12(𝑓(π‘₯+𝑦)+𝑓(π‘₯βˆ’π‘¦)βˆ’2𝑓(π‘₯)βˆ’2𝑓(𝑦)).(1.6)

Obviously, the function 𝑓(π‘₯)=𝑐π‘₯4 satisfies the functional equation (1.5), which is called the quartic functional equation. For other quartic functional equations, see [39].

Ebadian et al. [40] considered the generalized Hyers-Ulam stability of the following systems of the additive-quartic functional equations:𝑓π‘₯1+π‘₯2ξ€Έξ€·π‘₯,𝑦=𝑓1ξ€Έξ€·π‘₯,𝑦+𝑓2ξ€Έ,𝑓,𝑦π‘₯,2𝑦1+𝑦2ξ€Έξ€·+𝑓π‘₯,2𝑦1βˆ’π‘¦2ξ€Έξ€·=4𝑓π‘₯,𝑦1+𝑦2ξ€Έξ€·+4𝑓π‘₯,𝑦1βˆ’π‘¦2ξ€Έξ€·+24𝑓π‘₯,𝑦1ξ€Έξ€·βˆ’6𝑓π‘₯,𝑦2ξ€Έ,(1.7) and the quadratic-cubic functional equations:𝑓π‘₯,2𝑦1+𝑦2ξ€Έξ€·+𝑓π‘₯,2𝑦1βˆ’π‘¦2ξ€Έξ€·=2𝑓π‘₯,𝑦1+𝑦2ξ€Έξ€·+2𝑓π‘₯,𝑦1βˆ’π‘¦2ξ€Έξ€·+12𝑓π‘₯,𝑦1ξ€Έ,𝑓π‘₯,𝑦1+𝑦2ξ€Έξ€·+𝑓π‘₯,𝑦1βˆ’π‘¦2ξ€Έξ€·=2𝑓π‘₯,𝑦1ξ€Έξ€·+2𝑓π‘₯,𝑦2ξ€Έ.(1.8)

For more details about the results concerning mixed type functional equations, the readers are referred to [41–44].

Recently, Ghaemi et al. [45] investigated the stability of the following systems of quadratic-cubic functional equations:π‘“ξ€·π‘Žπ‘₯1+𝑏π‘₯2ξ€Έξ€·,𝑦+π‘“π‘Žπ‘₯1βˆ’π‘π‘₯2ξ€Έ,𝑦=2π‘Ž2𝑓π‘₯1ξ€Έ,𝑦+2𝑏2𝑓π‘₯2ξ€Έ,𝑓,𝑦π‘₯,π‘Žπ‘¦1+𝑏𝑦2ξ€Έξ€·+𝑓π‘₯,π‘Žπ‘¦1βˆ’π‘π‘¦2ξ€Έ=π‘Žπ‘2𝑓π‘₯,𝑦1+𝑦2ξ€Έξ€·+𝑓π‘₯,𝑦1βˆ’π‘¦2ξ€·π‘Žξ€Έξ€Έ+2π‘Ž2βˆ’π‘2𝑓π‘₯,𝑦1ξ€Έ,(1.9) and additive-quadratic-cubic functional equations:π‘“ξ€·π‘Žπ‘₯1+𝑏π‘₯2ξ€Έξ€·,𝑦,𝑧+π‘“π‘Žπ‘₯1βˆ’π‘π‘₯2ξ€Έξ€·π‘₯,𝑦,𝑧=2π‘Žπ‘“1ξ€Έ,𝑓,𝑦,𝑧π‘₯,π‘Žπ‘¦1+𝑏𝑦2ξ€Έξ€·,𝑧+𝑓π‘₯,π‘Žπ‘¦1βˆ’π‘π‘¦2ξ€Έ,𝑧=2π‘Ž2𝑓π‘₯,𝑦1ξ€Έ,𝑧+2𝑏2𝑓π‘₯,𝑦2ξ€Έ,𝑓,𝑧π‘₯,𝑦,π‘Žπ‘§1+𝑏𝑧2ξ€Έξ€·+𝑓π‘₯,𝑦,π‘Žπ‘§1βˆ’π‘π‘§2ξ€Έ=π‘Žπ‘2𝑓π‘₯,𝑦,𝑧1+𝑧2ξ€Έξ€·+𝑓π‘₯,𝑦,𝑧1βˆ’π‘§2ξ€·π‘Žξ€Έξ€Έ+2π‘Ž2βˆ’π‘2𝑓π‘₯,𝑦,𝑧1ξ€Έ(1.10) in PN-spaces (see Definition 1.6), where π‘Ž,π‘βˆˆβ„€β§΅{0} with π‘Žβ‰ Β±1,±𝑏. The function π‘“βˆΆβ„Γ—β„β†’β„ given by 𝑓(π‘₯,𝑦)=𝑐π‘₯2𝑦3 is a solution of the system (1.9). In particular, letting 𝑦=π‘₯, we get a quintic function π‘”βˆΆβ„β†’β„ in one variable given by 𝑔(π‘₯)∢=𝑓(π‘₯,π‘₯)=𝑐π‘₯5. Also, it is easy to see that the function π‘“βˆΆβ„Γ—β„Γ—β„β†’β„ defined by 𝑓(π‘₯,𝑦,𝑧)=𝑐π‘₯𝑦2𝑧3 is a solution of the system (1.10). In particular, letting 𝑦=𝑧=π‘₯, we get a sextic function β„ŽβˆΆβ„β†’β„ in one variable given by β„Ž(π‘₯)∢=𝑓(π‘₯,π‘₯,π‘₯)=𝑐π‘₯6.

The proof of the following propositions are evident.

Proposition 1.1. Let X and Y be real linear spaces. If a function π‘“βˆΆπ‘‹Γ—π‘‹β†’π‘Œ satisfies the system (1.9), then 𝑓(πœ†π‘₯,πœ‡π‘¦)=πœ†2πœ‡3𝑓(π‘₯,𝑦) for all π‘₯,π‘¦βˆˆπ‘‹ and rational numbers πœ†,πœ‡.

Proposition 1.2. Let X and Y be real linear spaces. If a function π‘“βˆΆπ‘‹Γ—π‘‹Γ—π‘‹β†’π‘Œ satisfies the system (1.10), then 𝑓(πœ†π‘₯,πœ‡π‘¦,πœ‚π‘§)=πœ†πœ‡2πœ‚3𝑓(π‘₯,𝑦,𝑧) for all π‘₯,𝑦,π‘§βˆˆπ‘‹ and rational numbers πœ†,πœ‡,πœ‚.

For our main results, we introduce Banach’s fixed point theorem and related results. For the proof of Theorem 1.3, refer to [46] and also Chapter 5 in [29] and, for more fixed point theory and other nonlinear methods, refer to [28, 47]. Especially, in 2003, Radu [27] proposed a new method for obtaining the existence of exact solutions and error estimations, based on the fixed point alternative (see also [48–53]).

Let (𝑋,𝑑) be a generalized metric space. We say that an operator π‘‡βˆΆπ‘‹β†’π‘‹ satisfies a Lipschitz condition with Lipschitz constant 𝐿 if there exists a constant 𝐿β‰₯0 such that 𝑑(𝑇π‘₯,𝑇𝑦)≀𝐿𝑑(π‘₯,𝑦) for all π‘₯,π‘¦βˆˆπ‘‹. If the Lipschitz constant 𝐿 is less than 1, then the operator 𝑇 is called a strictly contractive operator.

Note that the distinction between the generalized metric and the usual metric is that the range of the former is permitted to include the infinity. We recall the following theorem by Margolis and Diaz.

Theorem 1.3 (see [27, 46]). Suppose that (Ξ©,𝑑) is a complete generalized metric space and π‘‡βˆΆΞ©β†’Ξ© is a strictly contractive mapping with Lipschitz constant 𝐿. Then, for any π‘₯∈Ω, either π‘‘ξ€·π‘‡π‘šπ‘₯,π‘‡π‘š+1π‘₯ξ€Έ=∞(1.11) for all π‘šβ‰₯0 or there exists a natural number π‘š0 such that(1)𝑑(π‘‡π‘šπ‘₯,π‘‡π‘š+1π‘₯)<∞ for all π‘šβ‰₯π‘š0;(2)the sequence {π‘‡π‘šπ‘₯} is convergent to a fixed point π‘¦βˆ— of 𝑇;(3)π‘¦βˆ— is the unique fixed point of 𝑇 in Ξ›={π‘¦βˆˆΞ©βˆΆπ‘‘(π‘‡π‘š0π‘₯,𝑦)<∞};(4)𝑑(𝑦,π‘¦βˆ—)≀(1/1βˆ’πΏ)𝑑(𝑦,𝑇𝑦) for all π‘¦βˆˆΞ›.

The PN-spaces were first defined by Ε erstnev in 1963 (see [54]). Their definition was generalized by Alsina et al. in [55]. In this paper, we follow the definition of probabilistic space briefly as given in [56] (also, see [57]).

Definition 1.4. A distance distribution function (d.d.f.) is a nondecreasing function 𝐹 from ℝ+ into [0,1] that satisfies 𝐹(0)=0, 𝐹(+∞)=1 and 𝐹 is left-continuous on (0,+∞), where ℝ+∢=[0,+∞].

Forward, the space of distance distribution functions is denoted by Ξ”+ and the set of all 𝐹 in Ξ”+ with lim𝑑→+βˆžβˆ’πΉ(𝑑)=1 by 𝐷+. The space Ξ”+ is partially ordered by the usual pointwise ordering of functions, that is, 𝐹≀𝐺 if and only if 𝐹(π‘₯)≀𝐺(π‘₯) for all π‘₯ in ℝ+. For any π‘Žβ‰₯0, πœ€+π‘Ž is the d.d.f. given by πœ€+π‘Žξ‚»(𝑑)=0,ifπ‘‘β‰€π‘Ž,1,if𝑑>π‘Ž.(1.12)

Definition 1.5. A triangle function is a binary operation on Ξ”+, that is, a function πœβˆΆΞ”+Γ—Ξ”+β†’Ξ”+ that is associative, commutative, non-decreasing in each place, and has πœ€0 as the identity, that is, for all 𝐹,𝐺 and 𝐻 in Ξ”+,(TF1)𝜏(𝜏(𝐹,𝐺),𝐻)=𝜏(𝐹,𝜏(𝐺,𝐻));(TF2)𝜏(𝐹,𝐺)=𝜏(𝐺,𝐹);(TF3)πΉβ‰€πΊβ‡’πœ(𝐹,𝐻)β‰€πœ(𝐺,𝐻);(TF4)𝜏(𝐹,πœ€0)=𝜏(πœ€0,𝐹)=𝐹.

Typical continuous triangle function is Π𝑇(𝐹,𝐺)(π‘₯)=𝑇(𝐹(π‘₯),𝐺(π‘₯)),(1.13) where 𝑇 is a continuous 𝑑-norm, that is, a continuous binary operation on [0,1] that is commutative, associative, non-decreasing in each variable, and has 1 as the identity. For example, we introduce the following: 𝑀(π‘₯,𝑦)=min(π‘₯,𝑦)(1.14) for all π‘₯,π‘¦βˆˆ[0,1] is a continuous and maximal 𝑑-norm, namely, for any 𝑑-norm 𝑇, 𝑀β‰₯𝑇. Also, note that Π𝑀 is a maximal triangle function, that is, for all triangle function 𝜏, Π𝑀β‰₯𝜏.

Definition 1.6. A Ε erstnev probabilistic normed space (Ε erstnev PN-space) is a triple (𝑋,𝜈,𝜏), where 𝑋 is a real vector space, 𝜏 is continuous triangle function, and 𝜈 is a mapping (the probabilistic norm) from 𝑋 into Ξ”+ such that, for all choice of 𝑝,π‘žβˆˆπ‘‹ and π‘Žβˆˆβ„+, the following conditions hold:(N1)𝜈(𝑝)=πœ€0, if and only if 𝑝=πœƒ(πœƒ is the null vector in 𝑋);(N2)𝜈(π‘Žπ‘)(𝑑)=𝜈(𝑝)(𝑑/|π‘Ž|);(N3)𝜈(𝑝+π‘ž)β‰₯𝜏(𝜈(𝑝),𝜈(π‘ž)).

Let (𝑋,𝜈,𝜏) be a PN-space and {π‘₯𝑛} a sequence in 𝑋. Then {π‘₯𝑛} is said to be convergent if there exists π‘₯βˆˆπ‘‹ such that limπ‘›β†’βˆžπœˆξ€·π‘₯π‘›ξ€Έβˆ’π‘₯(𝑑)=1(1.15) for all 𝑑>0. In this case, the point π‘₯ is called the limit of {π‘₯𝑛}. The sequence {π‘₯𝑛} in (𝑋,𝜈,𝜏) is called a Cauchy sequence if, for any πœ€>0 and 𝛿>0, there exists a positive integer 𝑛0 such that 𝜈(π‘₯π‘›βˆ’π‘₯π‘š)(𝛿)>1βˆ’πœ€ for all π‘š,𝑛β‰₯𝑛0. Clearly, every convergent sequence in a PN-space is a Cauchy sequence. If each Cauchy sequence is convergent in a PN-space (𝑋,𝜈,𝜏), then (𝑋,𝜈,𝜏) is called a probabilistic Banach space (PB-space).

For more details about the results concerning stability of the functional equations on PN-spaces, the readers are referred to [58–61].

In this paper, by using the fixed point method, we establish the stability of the systems (1.9) and (1.10) form π‘Ÿ-divisible groups into Ε erstnev PB-space.

2. Mail Results

We start our work by the following theorem which investigates the stability problem for the system of the functional equations (1.9) form π‘Ÿ-divisible groups into Ε erstnev PB-space by using fixed point methods.

Theorem 2.1. Let π‘ βˆˆ{βˆ’1,1} be fixed. Let G be an π‘Ÿ-divisible group and (π‘Œ,𝜈,Π𝑇) a Ε erstnev PB-space. Let πœ™,πœ“βˆΆπΊΓ—πΊΓ—πΊβ†’π·+ be two functions such that Ξ¦(π‘₯,𝑦)(𝑑)∢=Ξ π‘‡ξ€½πœ™ξ€·π‘Ž(π‘ βˆ’1)/2π‘₯,0,π‘Ž(π‘ βˆ’1)/2𝑦2π‘Ž(5π‘ βˆ’1)/2π‘‘ξ€Έξ€·π‘Ž,πœ“(𝑠+1)/2π‘₯,π‘Ž(π‘ βˆ’1)/2𝑦,0ξ€Έξ€·2π‘Ž(5𝑠+5)/2𝑑(2.1) for all π‘₯,π‘¦βˆˆπΊ and, for some 0<π‘˜<π‘Ž10𝑠, Ξ¦(π‘Žπ‘ π‘₯,π‘Žπ‘ ξ€·π‘¦)π‘˜π‘Žβˆ’2𝑠𝑑β‰₯Ξ¦(π‘₯,𝑦)(𝑑),limπ‘›β†’βˆžπœ™ξ€·π‘Žπ‘ π‘›π‘₯1,π‘Žπ‘ π‘›π‘₯2,π‘Žπ‘ π‘›π‘¦π‘Žξ€Έξ€·βˆ’5𝑠𝑛𝑑=limπ‘›β†’βˆžπœ“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦1,π‘Žπ‘ π‘›π‘¦2π‘Žξ€Έξ€·βˆ’5𝑠𝑛𝑑=1(2.2) for all π‘₯,𝑦,π‘₯1,π‘₯2,𝑦1,𝑦2∈𝐺 and 𝑑>0. If π‘“βˆΆπΊΓ—πΊβ†’π‘Œ is a function such that 𝑓(0,𝑦)=0 for all π‘¦βˆˆπΊ and πœˆξ€·π‘“ξ€·π‘Žπ‘₯1+bπ‘₯2ξ€Έξ€·,𝑦+π‘“π‘Žπ‘₯1βˆ’π‘π‘₯2ξ€Έ,π‘¦βˆ’2π‘Ž2𝑓π‘₯1ξ€Έ,π‘¦βˆ’2𝑏2𝑓π‘₯2ξ€·π‘₯,𝑦(𝑑)β‰₯πœ™1,π‘₯2ξ€Έ,,𝑦(2.3)πœˆξ€·π‘“ξ€·π‘₯,π‘Žπ‘¦1+𝑏𝑦2ξ€Έξ€·+𝑓π‘₯,π‘Žπ‘¦1βˆ’π‘π‘¦2ξ€Έβˆ’π‘Žπ‘2𝑓π‘₯,𝑦1+𝑦2ξ€Έβˆ’π‘Žπ‘2𝑓π‘₯,𝑦1βˆ’π‘¦2ξ€Έξ€·π‘Žβˆ’2π‘Ž2βˆ’π‘2𝑓π‘₯,𝑦1ξ€·ξ€Έξ€Έ(𝑑)β‰₯πœ“π‘₯,𝑦1,𝑦2ξ€Έ(2.4) for all π‘₯,𝑦,π‘₯1,π‘₯2,𝑦1,𝑦2∈𝐺, then there exists a unique quintic function π‘‡βˆΆπΊΓ—πΊβ†’π‘Œ satisfying the system (1.9) and 𝜈(𝑓(π‘₯,𝑦)βˆ’π‘‡(π‘₯,𝑦))(𝑑)β‰₯Ξ¦(π‘₯,𝑦)ξ€·ξ€·1βˆ’π‘˜π‘Žβˆ’10𝑠𝑑(2.5) for all π‘₯,π‘¦βˆˆπΊ.

Proof. Putting π‘₯1=2π‘₯ and π‘₯2=0 and replacing 𝑦 by 2𝑦 in (2.3), we get πœˆξ€·π‘“(2π‘Žπ‘₯,2𝑦)βˆ’π‘Ž2𝑓(2π‘₯,2𝑦)(𝑑)β‰₯πœ™(2π‘₯,0,2𝑦)(2𝑑)(2.6) for all π‘₯,π‘¦βˆˆπΊ. Putting 𝑦1=2𝑦 and 𝑦2=0 and replacing π‘₯ by 2π‘Žπ‘₯ in (2.4), we get πœˆξ€·π‘“(2π‘Žπ‘₯,2π‘Žπ‘¦)βˆ’π‘Ž3𝑓(2π‘Žπ‘₯,2𝑦)(𝑑)β‰₯πœ“(2π‘Žπ‘₯,2𝑦,0)(2𝑑)(2.7) for all π‘₯,π‘¦βˆˆπΊ. Thus, we have πœˆξ€·π‘“(2π‘Žπ‘₯,2π‘Žπ‘¦)βˆ’π‘Ž5𝑓(2π‘₯,2𝑦)(𝑑)β‰₯Ξ π‘‡ξ€½ξ€·πœ™(2π‘₯,0,2𝑦)2π‘Žβˆ’3𝑑,πœ“(2π‘Žπ‘₯,2𝑦,0)(2𝑑)(2.8) for all π‘₯,π‘¦βˆˆπΊ. Replacing π‘₯, 𝑦 by π‘₯/2, 𝑦/2 in (2.8), we have πœˆξ€·π‘“(π‘Žπ‘₯,π‘Žπ‘¦)βˆ’π‘Ž5𝑓(π‘₯,𝑦)(𝑑)β‰₯Ξ π‘‡ξ€½ξ€·πœ™(π‘₯,0,𝑦)2π‘Žβˆ’3𝑑,πœ“(π‘Žπ‘₯,𝑦,0)(2𝑑)(2.9) for all π‘₯,π‘¦βˆˆπΊ. It follows from (2.9) that πœˆξ€·π‘Žβˆ’5𝑓(π‘Žπ‘₯,π‘Žπ‘¦)βˆ’π‘“(π‘₯,𝑦)(𝑑)β‰₯Ξ π‘‡ξ€½ξ€·πœ™(π‘₯,0,𝑦)2π‘Ž2𝑑,πœ“(π‘Žπ‘₯,𝑦,0)2π‘Ž5𝑑,πœˆξ€·π‘Žξ€Έξ€Ύ5π‘“ξ€·π‘Žβˆ’1π‘₯,π‘Žβˆ’1π‘¦ξ€Έξ€Έβˆ’π‘“(π‘₯,𝑦)(𝑑)β‰₯Ξ π‘‡ξ€½πœ™ξ€·π‘Žβˆ’1π‘₯,0,π‘Žβˆ’1𝑦2π‘Žβˆ’3𝑑,πœ“π‘Žπ‘₯,π‘Žβˆ’1𝑦,0(2𝑑)(2.10) for all π‘₯,π‘¦βˆˆπΊ. So we have πœˆξ€·π‘Žβˆ’5𝑠𝑓(π‘Žπ‘ π‘₯,π‘Žπ‘ ξ€Έπ‘¦)βˆ’π‘“(π‘₯,𝑦)(𝑑)β‰₯Ξ¦(π‘₯,𝑦)(𝑑)(2.11) for all π‘₯,π‘¦βˆˆπΊ. Let 𝑆 be the set of all mappings β„ŽβˆΆπΊΓ—πΊβ†’π‘Œ with β„Ž(0,π‘₯)=0 for all π‘₯∈𝐺, and define a generalized metric on 𝑆 as follows: 𝑑(β„Ž,π‘˜)=infπ‘’βˆˆβ„+ξ€Ύ,∢𝜈(β„Ž(π‘₯,𝑦)βˆ’π‘˜(π‘₯,𝑦))(𝑒𝑑)β‰₯Ξ¦(π‘₯,𝑦)(𝑑),βˆ€π‘₯,π‘¦βˆˆπΊ,βˆ€π‘‘>0(2.12) where, as usual, infβˆ…=+∞. The proof of the fact that (𝑆,𝑑) is a complete generalized metric space, can be shown in [48, 62].
Now, we consider the mapping π½βˆΆπ‘†β†’π‘† defined by π½β„Ž(π‘₯,𝑦)∢=π‘Žβˆ’5π‘ β„Ž(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦)(2.13) for all β„Žβˆˆπ‘† and π‘₯,π‘¦βˆˆπΊ. Let 𝑓,π‘”βˆˆπ‘† such that 𝑑(𝑓,𝑔)<πœ€. Then it follows that ξ€·πœˆ(𝐽𝑔(π‘₯,𝑦)βˆ’π½π‘“(π‘₯,𝑦))π‘˜π‘’π‘Žβˆ’10π‘ π‘‘ξ€Έξ€·π‘Ž=πœˆβˆ’5𝑠𝑔(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦)βˆ’π‘Žβˆ’5𝑠𝑓(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦)ξ€Έξ€·π‘˜π‘’π‘Žβˆ’10𝑠𝑑=𝜈(𝑔(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦)βˆ’π‘“(π‘Žπ‘ π‘₯,π‘Žπ‘ ξ€·π‘¦))π‘˜π‘’π‘Žβˆ’2𝑠𝑑β‰₯Ξ¦(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦)ξ€·π‘˜π‘Žβˆ’2𝑠𝑑β‰₯Ξ¦(π‘₯,𝑦)(𝑑),(2.14) that is, if 𝑑(𝑓,𝑔)<πœ€, then we have 𝑑(𝐽𝑓,𝐽𝑔)<π‘˜π‘Žβˆ’10π‘ πœ€. This means that 𝑑(𝐽𝑓,𝐽𝑔)β‰€π‘˜π‘Žβˆ’10𝑠𝑑(𝑓,𝑔)(2.15) for all 𝑓,π‘”βˆˆπ‘†; that is, 𝐽 is a strictly contractive self-mapping on 𝑆 with the Lipschitz constant π‘˜π‘Žβˆ’10𝑠. It follows from (2.11) that 𝜈(𝐽𝑓(π‘₯,𝑦)βˆ’π‘“(π‘₯,𝑦))(𝑑)β‰₯Ξ¦(π‘₯,𝑦)(𝑑)(2.16) for all π‘₯,π‘¦βˆˆπΊ and 𝑑>0, which implies that 𝑑(𝐽𝑓,𝑓)≀1. From Theorem 1.3, it follows that there exists a unique mapping π‘‡βˆΆπΊΓ—πΊβ†’π‘Œ such that 𝑇 is a fixed point of 𝐽, that is, 𝑇(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦)=π‘Ž5𝑠𝑇(π‘₯,𝑦) for all π‘₯,π‘¦βˆˆπΊ. Also, we have 𝑑(π½π‘šπ‘”,𝑇)β†’0 as π‘šβ†’βˆž, which implies the equality limπ‘šβ†’βˆžπ‘Žβˆ’5π‘ π‘šπ‘“(π‘Žπ‘ π‘šπ‘₯,π‘Žπ‘ π‘šπ‘¦)=𝑇(π‘₯)(2.17) for all π‘₯,π‘¦βˆˆπΊ. It follows from (2.3) that πœˆξ€·π‘‡ξ€·π‘Žπ‘₯1+𝑏π‘₯2ξ€Έξ€·,𝑦+π‘‡π‘Žπ‘₯1βˆ’π‘π‘₯2ξ€Έ,π‘¦βˆ’2π‘Ž2𝑇π‘₯1ξ€Έ,π‘¦βˆ’2𝑏2Tξ€·π‘₯2,𝑦(𝑑)=limπ‘›β†’βˆžπœˆξ€·π‘Žβˆ’5π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›ξ€·π‘Žπ‘₯1+𝑏π‘₯2ξ€Έ,π‘Žπ‘ π‘›π‘¦ξ€Έ+π‘Žβˆ’5π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›ξ€·π‘Žπ‘₯1βˆ’π‘π‘₯2ξ€Έ,π‘Žπ‘ π‘›π‘¦ξ€Έβˆ’2π‘Žβˆ’5π‘ π‘›π‘Ž2π‘“ξ€·π‘Žπ‘ π‘›π‘₯1,π‘Žπ‘ π‘›π‘¦ξ€Έβˆ’2π‘Žβˆ’5𝑠𝑛𝑏2π‘“ξ€·π‘Žπ‘ π‘›π‘₯2,π‘Žπ‘ π‘›π‘¦ξ€Έξ€Έ(𝑑)β‰₯limπ‘›β†’βˆžπœ™ξ€·π‘Žπ‘ π‘›π‘₯1,π‘Žπ‘ π‘›π‘₯2,π‘Žπ‘ π‘›π‘¦π‘Žξ€Έξ€·βˆ’5𝑠𝑛𝑑=1(2.18) for all π‘₯1,π‘₯2,π‘¦βˆˆπΊ. Also, it follows from (2.4) that πœˆξ€·π‘‡ξ€·π‘₯,π‘Žπ‘¦1+𝑏𝑦2ξ€Έξ€·+𝑇π‘₯,π‘Žπ‘¦1βˆ’π‘π‘¦2ξ€Έβˆ’π‘Žπ‘2𝑇π‘₯,𝑦1+𝑦2ξ€Έξ€·βˆ’π‘‡π‘₯,𝑦1βˆ’π‘¦2ξ€·π‘Žξ€Έξ€Έβˆ’2π‘Ž2βˆ’π‘2𝑇π‘₯,𝑦1ξ€Έξ€Έ(𝑑)=limπ‘›β†’βˆžπœˆξ€·π‘Žβˆ’5π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›ξ€·π‘Žπ‘¦1+𝑏𝑦2ξ€Έξ€Έ+π‘Žβˆ’5π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›ξ€·π‘Žπ‘¦1βˆ’π‘π‘¦2ξ€Έξ€Έβˆ’π‘Žβˆ’5π‘ π‘›π‘Žπ‘2π‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›ξ€·π‘¦1+𝑦2ξ€Έξ€Έβˆ’π‘Žβˆ’5π‘ π‘›π‘Žπ‘2π‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›ξ€·π‘¦1βˆ’π‘¦2ξ€Έξ€Έβˆ’2π‘Žβˆ’5π‘ π‘›π‘Žξ€·π‘Ž2βˆ’π‘2ξ€Έπ‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦1ξ€Έξ€Έ(𝑑)β‰₯limπ‘›β†’βˆžπ‘Žβˆ’5π‘ π‘›πœ“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦1,π‘Žπ‘ π‘›π‘¦2ξ€Έ(𝑑)=1(2.19) for all π‘₯,𝑦1,𝑦2∈𝐺. This means that 𝑇 satisfies (1.9); that is, 𝑇 is quintic.
According to the fixed point alternative, since 𝑇 is the unique fixed point of 𝐽 in the set Ξ©={π‘”βˆˆπ‘†βˆΆπ‘‘(𝑓,𝑔)<∞}, 𝑇 is the unique mapping such that 𝜈(𝑓(π‘₯,𝑦)βˆ’π‘‡(π‘₯,𝑦))(𝑒𝑑)β‰₯Ξ¦(π‘₯,𝑦)(𝑑)(2.20) for all π‘₯,π‘¦βˆˆπΊ and 𝑑>0. Using the fixed point alternative, we obtain 1𝑑(𝑓,𝑇)≀11βˆ’πΏπ‘‘(𝑓,𝐽𝑓)≀1βˆ’π‘˜π‘Žβˆ’10𝑠,(2.21) which implies the inequality ξ‚€π‘‘πœˆ(𝑓(π‘₯,𝑦)βˆ’π‘‡(π‘₯,𝑦))1βˆ’π‘˜π‘Žβˆ’10𝑠β‰₯Ξ¦(π‘₯,𝑦)(𝑑)(2.22) for all π‘₯,π‘¦βˆˆπΊ and 𝑑>0. Therefore, we have 𝜈(𝑓(π‘₯,𝑦)βˆ’π‘‡(π‘₯,𝑦))(𝑑)β‰₯Ξ¦(π‘₯,𝑦)ξ€·ξ€·1βˆ’π‘˜π‘Žβˆ’10𝑠𝑑(2.23) for all π‘₯,π‘¦βˆˆπ‘‹πΊ and 𝑑>0. This completes the proof.

Now, we investigate the stability problem for the system of the functional equations (1.10) form π‘Ÿ-divisible groups into Ε erstnev PB-space by using the fixed point theorem.

Theorem 2.2. Let π‘ βˆˆ{βˆ’1,1} be fixed. Let G be an π‘Ÿ-divisible group and (π‘Œ,𝜈,Π𝑇) a Ε erstnev PB-space. Let Ξ¦,Ξ¨,Ξ₯βˆΆπΊΓ—G×𝐺×𝐺→𝐷+ be functions such that Θ(π‘₯,𝑦,𝑧)(𝑑)∢=Π𝑇Ξ₯ξ€·π‘Ž(𝑠+1)/2π‘₯,π‘Ž(𝑠+1)/2𝑦,π‘Ž(𝑠+1)/2𝑧,0ξ€Έξ€·2π‘Ž3𝑠+3𝑑,Ξ π‘‡ξ€½Ξ¨ξ€·π‘Ž(𝑠+1)/2π‘₯,π‘Ž(𝑠+1)/2𝑦,0,π‘Ž(π‘ βˆ’1)/2𝑧2π‘Ž3𝑠+6𝑑,Ξ¦ξ€·π‘Ž(π‘ βˆ’1)/2π‘₯,0,π‘Ž(π‘ βˆ’1)/2𝑦,π‘Ž(π‘ βˆ’1)/2𝑧2π‘Ž3𝑠+8𝑑(2.24) for all π‘₯,𝑦,π‘§βˆˆπΊ and, for some 0<π‘˜<π‘Ž6𝑠, Ξ¦(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦,π‘Žπ‘ π‘§)(π‘˜π‘‘)β‰₯Ξ¦(π‘₯,𝑦,𝑧)(𝑑);limπ‘›β†’βˆžΞ¦ξ€·π‘Žπ‘ π‘›π‘₯1,π‘Žπ‘ π‘›π‘₯2,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ π‘›π‘§π‘Žξ€Έξ€·βˆ’6𝑠𝑛𝑑=limπ‘›β†’βˆžΞ¨ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦1,π‘Žπ‘ π‘›π‘¦2,π‘Žπ‘ π‘›π‘§π‘Žξ€Έξ€·βˆ’6𝑠𝑛𝑑=limπ‘›β†’βˆžΞ₯ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ π‘›π‘§1,π‘Žπ‘ π‘›π‘§2π‘Žξ€Έξ€·βˆ’6𝑠𝑛𝑑=1(2.25) for all π‘₯,𝑦,π‘₯1,π‘₯2,𝑦1,𝑦2,𝑧1,𝑧2∈𝐺. If π‘“βˆΆπΊΓ—πΊΓ—πΊβ†’π‘Œ is a function such that 𝑓(π‘₯,0,𝑧)=0 for all π‘₯,π‘§βˆˆπΊ and πœˆξ€·π‘“ξ€·π‘Žπ‘₯1+𝑏π‘₯2ξ€Έξ€·,𝑦,𝑧+π‘“π‘Žπ‘₯1βˆ’π‘π‘₯2ξ€Έξ€·π‘₯,𝑦,π‘§βˆ’2π‘Žπ‘“1ξ€·π‘₯,𝑦,𝑧(𝑑)β‰₯Ξ¦1,π‘₯2ξ€Έ,𝑦,𝑧(𝑑),(2.26)πœˆξ€·π‘“ξ€·π‘₯,π‘Žπ‘¦1+𝑏𝑦2ξ€Έξ€·,𝑧+𝑓π‘₯,π‘Žπ‘¦1βˆ’π‘π‘¦2ξ€Έ,π‘§βˆ’2π‘Ž2𝑓π‘₯,𝑦1ξ€Έ,π‘§βˆ’2𝑏2𝑓π‘₯,𝑦2ξ€·,𝑧(𝑑)β‰₯Ξ¨π‘₯,𝑦1,𝑦2ξ€Έ,𝑧(𝑑),(2.27)πœˆξ€·π‘“ξ€·π‘₯,𝑦,π‘Žπ‘§1+𝑏𝑧2ξ€Έξ€·+𝑓π‘₯,𝑦,π‘Žπ‘§1βˆ’π‘π‘§2ξ€Έβˆ’π‘Žπ‘2𝑓π‘₯,𝑦,𝑧1+𝑧2ξ€Έξ€·+𝑓π‘₯,𝑦,𝑧1βˆ’π‘§2ξ€·π‘Žξ€Έξ€Έβˆ’2π‘Ž2βˆ’π‘2𝑓π‘₯,𝑦,𝑧1ξ€·ξ€Έξ€Έ(𝑑)β‰₯Ξ₯π‘₯,𝑦,𝑧1,𝑧2ξ€Έ(𝑑)(2.28) for all π‘₯,𝑦,π‘₯1,π‘₯2,𝑦1,𝑦2,𝑧1,𝑧2∈𝐺, then there exists a unique quintic function π‘‡βˆΆπΊΓ—πΊΓ—πΊβ†’π‘Œ satisfying (1.10) and 𝜈(𝑓(π‘₯,𝑦,𝑧)βˆ’π‘‡(π‘₯,𝑦,𝑧))(𝑑)β‰₯Θ(π‘₯,𝑦,𝑧)ξ€·ξ€·1βˆ’π‘˜π‘Žβˆ’6𝑠𝑑(2.29) for all π‘₯,𝑦,π‘§βˆˆπΊ.

Proof. Putting π‘₯1=2π‘₯ and π‘₯2=0 and replacing 𝑦,𝑧 by 2𝑦,2𝑧 in (2.26), we get ξ‚€1𝜈(𝑓(2π‘Žπ‘₯,2𝑦,2𝑧)βˆ’π‘Žπ‘“(2π‘₯,2𝑦,2𝑧))2𝑑β‰₯Ξ¦(2π‘₯,0,2𝑦,2𝑧)(𝑑)(2.30) for all π‘₯,𝑦,π‘§βˆˆπΊ. Putting 𝑦1=2𝑦 and 𝑦2=0 and replacing π‘₯,𝑧 by 2π‘Žπ‘₯,2𝑧 in (2.27), we get πœˆξ€·π‘“(2π‘Žπ‘₯,2π‘Žπ‘¦,2𝑧)βˆ’π‘Ž2ξ€Έξ‚€1𝑓(2π‘Žπ‘₯,2𝑦,2𝑧)2𝑑β‰₯Ξ¨(2π‘Žπ‘₯,2𝑦,0,2𝑧)(𝑑)(2.31) for all π‘₯,𝑦,π‘§βˆˆπΊ. Putting 𝑧1=2𝑧 and 𝑧2=0 and replacing π‘₯,𝑦 by 2π‘Žπ‘₯,2π‘Žπ‘¦ in (2.28), we get πœˆξ€·π‘“(2π‘Žπ‘₯,2π‘Žπ‘¦,2π‘Žπ‘§)βˆ’π‘Ž3ξ€Έξ‚€1𝑓(2π‘Žπ‘₯,2π‘Žπ‘¦,2𝑧)2𝑑β‰₯Ξ₯(2π‘Žπ‘₯,2π‘Žπ‘¦,2𝑧,0)(𝑑),(2.32) for all π‘₯,𝑦,π‘§βˆˆπΊ. Thus, πœˆξ€·π‘“(2π‘Žπ‘₯,2π‘Žπ‘¦,2π‘Žπ‘§)βˆ’π‘Ž6𝑓(2π‘₯,2𝑦,2𝑧)(𝑑)β‰₯Π𝑇Ξ₯(2π‘Žπ‘₯,2π‘Žπ‘¦,2𝑧,0)(2𝑑),Π𝑇Ψ(2π‘Žπ‘₯,2𝑦,0,2𝑧)2π‘Ž3𝑑,Ξ¦(2π‘₯,0,2𝑦,2𝑧)2π‘Ž5𝑑(2.33) for all π‘₯,𝑦,π‘§βˆˆπΊ. Replacing π‘₯, 𝑦, and 𝑧 by π‘₯/2, 𝑦/2, and 𝑧/2 in (2.33), we have πœˆξ€·π‘“(π‘Žπ‘₯,π‘Žπ‘¦,π‘Žπ‘§)βˆ’π‘Ž6𝑓(π‘₯,𝑦,𝑧)(𝑑)β‰₯Π𝑇Ξ₯(π‘Žπ‘₯,π‘Žπ‘¦,𝑧,0)(2𝑑),Π𝑇Ψ(π‘Žπ‘₯,𝑦,0,𝑧)2π‘Ž3𝑑,Ξ¦(π‘₯,0,𝑦,𝑧)2π‘Ž5𝑑(2.34) for all π‘₯,𝑦,π‘§βˆˆπΊ. It follows from (2.34) that πœˆξ€·π‘Žβˆ’6𝑓(π‘Žπ‘₯,π‘Žπ‘¦,π‘Žπ‘§)βˆ’π‘“(π‘₯,𝑦,𝑧)(𝑑)β‰₯Π𝑇Ξ₯ξ€·(π‘Žπ‘₯,π‘Žπ‘¦,𝑧,0)2π‘Ž6𝑑,Π𝑇Ψ(π‘Žπ‘₯,𝑦,0,𝑧)2π‘Ž9𝑑,Ξ¦(π‘₯,0,𝑦,𝑧)2π‘Ž11𝑑,πœˆξ€·π‘Žξ€Έξ€Ύξ€Ύ6π‘“ξ€·π‘Žβˆ’1π‘₯,π‘Žβˆ’1𝑦,π‘Žβˆ’1π‘§ξ€Έξ€Έβˆ’π‘“(π‘₯,𝑦,𝑧)(𝑑)β‰₯Π𝑇Ξ₯ξ€·π‘₯,𝑦,π‘Žβˆ’1ξ€Έ(𝑧,02π‘Žπ‘‘),Π𝑇Ψπ‘₯,π‘Žβˆ’1𝑦,0,π‘Žβˆ’1𝑧2π‘Ž3π‘‘ξ€ΈΞ¦ξ€·π‘Žβˆ’1π‘₯,0,π‘Žβˆ’1𝑦,π‘Žβˆ’1𝑧,ξ€·2π‘Ž5𝑑(2.35) for all π‘₯,𝑦,π‘§βˆˆπΊ. Thus, we have πœˆξ€·π‘Žβˆ’6𝑠𝑓(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦,π‘Žπ‘ ξ€Έπ‘§)βˆ’π‘“(π‘₯,𝑦,𝑧)(𝑑)β‰₯Θ(π‘₯,𝑦,𝑧)(𝑑)(2.36) for all π‘₯,𝑦,π‘§βˆˆπΊ. Let 𝑆 be the set of all mappings β„ŽβˆΆπ‘‹Γ—π‘‹Γ—π‘‹β†’π‘Œ with β„Ž(π‘₯,0,𝑧)=0 for all π‘₯,π‘§βˆˆπΊ, and define a generalized metric on 𝑆 as follows: 𝑑(β„Ž,π‘˜)=infπ‘’βˆˆβ„+ξ€Ύ,∢𝜈(β„Ž(π‘₯,𝑦,𝑧)βˆ’π‘˜(π‘₯,𝑦,𝑧))(𝑒𝑑)β‰₯Θ(π‘₯,𝑦,𝑧)(𝑑),βˆ€π‘₯,𝑦,π‘§βˆˆπΊ,𝑑>0(2.37) where, as usual, infβˆ…=+∞. The proof of the fact that (𝑆,𝑑) is a complete generalized metric space can be shown in [48, 62].
Now, we consider the mapping π½βˆΆπ‘†β†’π‘† defined by π½β„Ž(π‘₯,𝑦,𝑧)∢=π‘Žβˆ’6π‘ β„Ž(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦,π‘Žπ‘ π‘§)(2.38) for all β„Žβˆˆπ‘† and π‘₯,𝑦,π‘§βˆˆπΊ. Let 𝑓,π‘”βˆˆπ‘† be such that 𝑑(𝑓,𝑔)<πœ€. Then we have ξ€·πœˆ(𝐽𝑔(π‘₯,𝑦,𝑧)βˆ’π½π‘“(π‘₯,𝑦,𝑧))π‘˜π‘’π‘Žβˆ’6π‘ π‘‘ξ€Έξ€·π‘Ž=πœˆβˆ’6𝑠𝑔(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦,π‘Žπ‘ π‘§)βˆ’π‘Žβˆ’6𝑠𝑓(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦,π‘Žπ‘ π‘§)ξ€Έξ€·π‘˜π‘’π‘Žβˆ’6𝑠𝑑=𝜈(𝑔(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦,π‘Žπ‘ π‘§)βˆ’π‘“(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦,π‘Žπ‘ π‘§))(π‘˜π‘’π‘‘)β‰₯Θ(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦,π‘Žπ‘ π‘§)(π‘˜π‘‘)β‰₯Θ(π‘₯,𝑦,𝑧)(𝑑),(2.39) that is, if 𝑑(𝑓,𝑔)<πœ€, then we have 𝑑(𝐽𝑓,𝐽𝑔)<π‘˜π‘Žβˆ’6π‘ πœ€. This means that 𝑑(𝐽𝑓,𝐽𝑔)β‰€π‘˜π‘Žβˆ’6𝑠𝑑(𝑓,𝑔)(2.40) for all 𝑓,π‘”βˆˆπ‘†; that is, 𝐽 is a strictly contractive self-mapping on 𝑆 with the Lipschitz constant π‘˜π‘Žβˆ’6𝑠. It follows from (2.36) that 𝜈(𝐽𝑓(π‘₯,𝑦,𝑧)βˆ’π‘“(π‘₯,𝑦,𝑧))(𝑑)β‰₯Θ(π‘₯,𝑦,𝑧)(𝑑)(2.41) for all π‘₯,𝑦,π‘§βˆˆπΊ and all 𝑑>0, which implies that 𝑑(𝐽𝑓,𝑓)≀1. From Theorem 1.3, it follows that there exists a unique mapping π‘‡βˆΆπΊΓ—πΊΓ—πΊβ†’π‘Œ such that 𝑇 is a fixed point of 𝐽, that is, 𝑇(π‘Žπ‘ π‘₯,π‘Žπ‘ π‘¦,π‘Žπ‘ π‘§)=π‘Ž6𝑠𝑇(π‘₯,𝑦,𝑧) for all π‘₯,𝑦,π‘§βˆˆπΊ. Also, 𝑑(π½π‘šπ‘”,𝑇)β†’0 as π‘šβ†’βˆž, which implies the equality limπ‘šβ†’βˆžπ‘Žβˆ’6π‘ π‘šπ‘“(π‘Žπ‘ π‘šπ‘₯,π‘Žπ‘ π‘šπ‘¦,π‘Žπ‘ π‘šπ‘§)=𝑇(π‘₯)(2.42) for all π‘₯βˆˆπ‘‹. It follows from (2.26), (2.27), and (2.28) that πœˆξ€·π‘‡ξ€·π‘Žπ‘₯1+𝑏π‘₯2ξ€Έξ€·,𝑦,𝑧+π‘‡π‘Žπ‘₯1βˆ’π‘π‘₯2ξ€Έξ€·π‘₯,𝑦,π‘§βˆ’2π‘Žπ‘‡1,𝑦,𝑧(𝑑)=limπ‘›β†’βˆžπœˆξ€·π‘Žβˆ’6π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›ξ€·π‘Žπ‘₯1+𝑏π‘₯2ξ€Έ,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ n𝑧+π‘Žβˆ’6π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›ξ€·π‘Žπ‘₯1βˆ’π‘π‘₯2ξ€Έ,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ π‘›π‘§ξ€Έβˆ’2π‘Žπ‘Žβˆ’6π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›π‘₯1,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ π‘›π‘§ξ€Έξ€Έ(𝑑)β‰₯limπ‘›β†’βˆžΞ¦ξ€·π‘Žπ‘ π‘›π‘₯1,π‘Žπ‘ π‘›π‘₯2,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ π‘›π‘§π‘Žξ€Έξ€·βˆ’6π‘ π‘›π‘‘ξ€Έπœˆξ€·π‘‡ξ€·=1,π‘₯,π‘Žπ‘¦1+𝑏𝑦2ξ€Έξ€·,𝑧+𝑇π‘₯,π‘Žπ‘¦1βˆ’π‘π‘¦2ξ€Έ,π‘§βˆ’2π‘Ž2𝑇π‘₯,𝑦1ξ€Έ,π‘§βˆ’2𝑏2𝑇π‘₯,𝑦2,𝑧(𝑑)=limπ‘›β†’βˆžπœˆξ€·π‘Žβˆ’6π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›ξ€·π‘Žπ‘¦1+𝑏𝑦2ξ€Έ,π‘Žπ‘ π‘›π‘§ξ€Έξ€·π‘Ž+𝑓𝑠𝑛π‘₯,π‘Žπ‘ π‘›π‘Žπ‘¦1βˆ’π‘Žπ‘ π‘›π‘π‘¦2,π‘Žπ‘ π‘›π‘§ξ€Έβˆ’2π‘Ž2π‘Žβˆ’6π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦1,π‘Žπ‘ π‘›π‘§ξ€Έ+2𝑏2π‘Žβˆ’6π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦2,π‘Žπ‘ π‘›π‘§(𝑑)β‰₯limπ‘›β†’βˆžΞ¨ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦1,π‘Žπ‘ π‘›π‘¦2,π‘Žπ‘ π‘›π‘§π‘Žξ€Έξ€·βˆ’6π‘ π‘›π‘‘ξ€Έπœˆξ€·π‘‡ξ€·=1,π‘₯,𝑦,π‘Žπ‘§1+𝑏𝑧2ξ€Έξ€·+𝑇π‘₯,𝑦,π‘Žπ‘§1βˆ’π‘π‘§2ξ€Έβˆ’π‘Žπ‘2𝑇π‘₯,𝑦,𝑧1+𝑧2ξ€Έξ€·βˆ’π‘‡π‘₯,𝑦,𝑧1βˆ’π‘§2ξ€·π‘Žξ€Έξ€Έβˆ’2π‘Ž2βˆ’π‘2𝑇π‘₯,𝑦,𝑧1ξ€Έξ€Έ(𝑑)=limπ‘›β†’βˆžπœˆξ€·π‘Žβˆ’6π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ π‘›ξ€·π‘Žπ‘§1+𝑏𝑧2ξ€Έξ€Έ+π‘Žβˆ’6π‘ π‘›π‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ π‘›ξ€·π‘Žπ‘§1βˆ’π‘π‘§2ξ€Έξ€Έβˆ’π‘Žπ‘2π‘Žβˆ’6π‘ π‘›ξ€·π‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ π‘›ξ€·π‘§1+𝑧2ξ€·π‘Žξ€Έξ€Έ+𝑓𝑠𝑛π‘₯,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ π‘›ξ€·π‘§1βˆ’π‘§2ξ€Έξ€Έξ€Έβˆ’2π‘Žπ‘Žβˆ’6π‘ π‘›ξ€·π‘Ž2βˆ’π‘2ξ€Έπ‘“ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ π‘›π‘§1ξ€Έξ€Έ(𝑑)β‰₯limπ‘›β†’βˆžΞ₯ξ€·π‘Žπ‘ π‘›π‘₯,π‘Žπ‘ π‘›π‘¦,π‘Žπ‘ π‘›π‘§1,π‘Žπ‘ π‘›π‘§2π‘Žξ€Έξ€·βˆ’6𝑠𝑛𝑑=1(2.43) for all π‘₯,𝑦,π‘₯1,π‘₯2,𝑦1,𝑦2,𝑧1,𝑧2∈𝐺. This means that 𝑇 satisfies (1.10); that is, 𝑇 is sextic.
According to the fixed point alternative, since 𝑇 is the unique fixed point of 𝐽 in the set Ξ©={π‘”βˆˆπ‘†βˆΆπ‘‘(𝑓,𝑔)<∞}, 𝑇 is the unique mapping such that 𝜈(𝑓(π‘₯,𝑦,𝑧)βˆ’π‘‡(π‘₯,𝑦,𝑧))(𝑒𝑑)β‰₯Θ(π‘₯,𝑦,𝑧)(𝑑)(2.44) for all π‘₯,𝑦,π‘§βˆˆπΊ and 𝑑>0. Using the fixed point alternative, we obtain 1𝑑(𝑓,𝑇)≀1βˆ’πΏπ‘‘(𝑓,𝐽f1)≀1βˆ’π‘˜π‘Žβˆ’6𝑠,(2.45) which implies the inequality ξ‚€π‘‘πœˆ(𝑓(π‘₯,𝑦,𝑧)βˆ’π‘‡(π‘₯,𝑦,𝑧))1βˆ’π‘˜π‘Žβˆ’6𝑠β‰₯Θ(π‘₯,𝑦,𝑧)(𝑑)(2.46) for all π‘₯,𝑦,π‘§βˆˆπΊ and 𝑑>0. So 𝜈(𝑓(π‘₯,𝑦,𝑧)βˆ’π‘‡(π‘₯,𝑦,𝑧))(𝑑)β‰₯Θ(π‘₯,𝑦,𝑧)ξ€·ξ€·1βˆ’π‘˜π‘Žβˆ’6𝑠𝑑(2.47) for all π‘₯,𝑦,π‘§βˆˆπΊ and 𝑑>0. This completes the proof.

Acknowledgment

The second author was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-C00050).