Abstract

Let ğ‘‡>5 be an integer, ğ•‹={1,2,…,ğ‘‡}. We are concerned with the global structure of positive solutions set of the discrete second-order boundary value problems Δ2ğ‘¢(ğ‘¡âˆ’1)+ğ‘Ÿğ‘š(ğ‘¡)ğ‘“(ğ‘¢(ğ‘¡))=0,ğ‘¡âˆˆğ•‹,ğ‘¢(0)=ğ‘¢(ğ‘‡+1)=0, where ğ‘Ÿâˆˆâ„ is a parameter, ğ‘šâˆ¶ğ•‹â†’â„ changes its sign and ğ‘š(ğ‘¡)≠0forğ‘¡âˆˆğ•‹.

1. Introduction

Let ğ‘‡>5 be an integer, ğ•‹={1,2,…,ğ‘‡}. In this paper, we are concerned with the global structure of positive solutions set of the discrete second-order boundary value problems Δ2ğ‘¢(ğ‘¡âˆ’1)+ğ‘Ÿğ‘š(ğ‘¡)ğ‘“(ğ‘¢(ğ‘¡))=0,ğ‘¡âˆˆğ•‹,(1.1)ğ‘¢(0)=ğ‘¢(ğ‘‡+1)=0,(1.2) where ğ‘Ÿâˆˆâ„ is a parameter, ğ‘šâˆ¶ğ•‹â†’â„ changes its sign, and ğ‘š(ğ‘¡)≠0 for ğ‘¡âˆˆğ•‹.

The boundary value problems with sign-changing weight arise from a selection-migration model in population genetics, see Fleming [1]. 𑚠changes sign corresponds to the fact that an allele ğ´1 holds an advantage over a rival allele ğ´2 at the same points and is at a disadvantage at others. The parameter 𑟠corresponds to the reciprocal of the diffusion. So, the existence and multiplicity of positive solutions with sign-changing weight in continuous case has been studied by many authors, see, for example, [2–8] and the references therein.

For the discrete case, there are many literature dealing with difference equations similar to (1.1) subject to various boundary value conditions. We refer to [9–17] and the references therein. However, there are few papers to discuss the existence of positive solutions to (1.1) and (1.2) if ğ‘š(ğ‘¡) changes sign on ğ•‹. Maybe the main reason is the spectrum of the following linear eigenvalue problems Δ2ğ‘¢(ğ‘¡âˆ’1)+ğœ†ğ‘š(ğ‘¡)ğ‘¢(ğ‘¡)=0,ğ‘¡âˆˆğ•‹,ğ‘¢(0)=ğ‘¢(ğ‘‡+1)=0(1.3) is not clear when 𑚠changes its sign on ğ•‹.

In 2008, Shi and Yan [18] investigated the spectrum of the second-order boundary value problems of difference equations [],−Δğ‘(ğ‘¡âˆ’1)Δğ‘¢(ğ‘¡âˆ’1)+ğ‘(ğ‘¡)ğ‘¢(ğ‘¡)=ğœ†ğ‘š(ğ‘¡)ğ‘¢(ğ‘¡),ğ‘¡âˆˆğ•‹,ğ‘(0)Δğ‘¢(0)−ğ‘(ğ‘‡)Δğ‘¢(ğ‘‡)=ğ¾ğ‘¢(0)ğ‘¢(ğ‘‡)(1.4) where î‚€ğ¾=ğ‘˜11ğ‘˜12ğ‘˜21ğ‘˜22î‚ is a symmetric and positive definite 2×2 matrix. ğ‘∶{0,1,…,ğ‘‡}→â„, ğ‘∶ğ•‹â†’â„, and ğ‘šâˆ¶ğ•‹â†’â„ satisfy(A1)ğ‘šâˆ¶ğ•‹â†’â„ changes its sign, and ğ‘š(ğ‘¡)≠0 for ğ‘¡âˆˆğ•‹.(A2)ğ‘(ğ‘¡âˆ’1)≥0,ğ‘(ğ‘¡)≥0,ğ‘(ğ‘¡âˆ’1)+ğ‘(ğ‘¡)>0,forğ‘¡âˆˆğ•‹, and ğ‘(0)+ğ‘˜11≠0, ğ‘(ğ‘‡)>0.

They proved that (1.4) has 𑇠eigenvalues ğœ†1≤ğœ†2≤⋯≤ğœ†ğ‘‡ which have 𑇠corresponding linearly independent and orthogonal eigenfunctions.

However, it's easy to see that (1.3) is not included in (1.4) under the condition (A2). Also, Shi and Yan [18] provided no information about the sign of the eigenvalues and no information about the corresponding eigenfunctions.

In this paper, we will show that (1.3) has two principal eigenvalues ğœ†ğ‘š,−<0<ğœ†ğ‘š,+, and the corresponding eigenfunctions we denote by ğœ“ğ‘š,− and ğœ“ğ‘š,+ don't change their sign on îğ•‹âˆ¶={0,1,…,ğ‘‡,ğ‘‡+1}. Based on this result, using Rabinowitz's global bifurcation theorem [19], we will discuss the global structure of positive solutions set of (1.1) and (1.2).

The assumptions we are interested in this paper are as follows:(H1)ğ‘“∈ğ¶(â„,â„) with ğ‘ ğ‘“(ğ‘ )>0 for ğ‘ â‰ 0;(H2)ğ‘“0=lim|ğ‘ |→0(ğ‘“(ğ‘ )/ğ‘ )∈(0,âˆ);(H3)ğ‘“âˆ=lim|ğ‘ |→+âˆ(ğ‘“(ğ‘ )/ğ‘ )=0;(H3′)ğ‘“âˆ=âˆ.

Our main result is the following.

Theorem 1.1. Assume that (H1), (H2) hold. (i)If (H3) holds, then there exist 0<ğœ†âˆ—≤ğœ†ğ‘š,+/ğ‘“0 and ğœ†ğ‘š,−/ğ‘“0≤ğœ†âˆ—<0 such that (1.1), (1.2) has at least one positive solution for ğ‘Ÿâˆˆ(−âˆ,ğœ†âˆ—)∪(ğœ†âˆ—,âˆ).(ii)If (H3′) holds, then there exist ğœŒâˆ—≤ğœ†ğ‘š,−/ğ‘“0<0 and ğœŒâˆ—≥ğœ†ğ‘š,+/ğ‘“0>0 such that (1.1), (1.2) has at least one positive solution for ğ‘Ÿâˆˆ(ğœŒâˆ—,0)∪(0,ğœŒâˆ—).

The rest of the paper is arranged as follows. In Section 2, the existence of two principal eigenvalues of (1.3), and some properties of these two eigenvalues will be discussed. In Section 3, we will prove our main result.

2. Existence of Two Principal Eigenvalues to (1.3)

Recall that ğ•‹={1,2,…,ğ‘‡} and îğ•‹={0,1,…,ğ‘‡+1}. Let îğ‘‹={ğ‘¢âˆ¶ğ•‹â†’â„∣ğ‘¢(0)=ğ‘¢(ğ‘‡+1)=0}. Then ğ‘‹ is a Banach space under the norm ‖ğ‘¢â€–ğ‘‹=maxğ‘¡âˆˆîğ•‹|ğ‘¢(ğ‘¡)|. Let ğ‘Œ={ğ‘¢âˆ£ğ‘¢âˆ¶ğ•‹â†’â„}. Then 𑌠is a Banach space under the norm ‖ğ‘¢â€–ğ‘Œ=maxğ‘¡âˆˆğ•‹|ğ‘¢(ğ‘¡)|.

It's well known that the operator ğœ’∶ğ‘‹â†’ğ‘Œ, ğœ’(0,ğ‘¢(1),ğ‘¢(2),…,ğ‘¢(ğ‘‡),0)=(ğ‘¢(1),ğ‘¢(2),…,ğ‘¢(ğ‘‡))(2.1) is a homomorphism.

Define the operator ğ¿âˆ¶ğ‘‹â†’𑌠by ğ¿ğ‘¢(ğ‘¡)=−Δ2ğ‘¢(ğ‘¡âˆ’1),ğ‘¡âˆˆğ•‹.(2.2)

In this section, we will discuss the existence of principal eigenvalues for (1.3) with ğ‘šâˆ¶ğ•‹â†’â„ that changes its sign. The main idea we will use aries from [20, 21].

Theorem 2.1. Equation (1.3) has two principal eigenvalues ğœ†ğ‘š,+ and ğœ†ğ‘š,− such that ğœ†ğ‘š,−<0<ğœ†ğ‘š,+, and the corresponding eigenfunctions, we denoted by ğœ“ğ‘š,+ and ğœ“ğ‘š,− do not change sign on îğ•‹.

Proof. Consider, for fixed ğœ†, the eigenvalue problems ğ‘¢ğ¿ğ‘¢âˆ’ğœ†ğ‘š(ğ‘¡)ğ‘¢(ğ‘¡)=ğœ‡ğ‘¢(ğ‘¡),ğ‘¡âˆˆğ•‹,(0)=ğ‘¢(ğ‘‡+1)=0.(2.3) By Kelley and Peterson [22, Theorem  7.6], for fixed ğœ†, (2.3) has ğ‘‡-simple eigenvalues ğœ‡ğ‘š,1(ğœ†)<ğœ‡ğ‘š,2(ğœ†)<⋯<ğœ‡ğ‘š,ğ‘‡(ğœ†),(2.4) and the corresponding eigenfunction ğœ“ğ‘š,ğ‘˜(ğœ†,ğ‘¡) has exactly ğ‘˜âˆ’1 simple generalized zeros.
Thus, 𜆠is a principal eigenvalue of (1.3) if and only if ğœ‡ğ‘š,1(ğœ†)=0.
On the other hand, let ğ‘†ğ‘š,ğœ†=ğ‘‡î“ğ‘¡=0||||Δğœ™(ğ‘¡)2−ğœ†ğ‘‡î“ğ‘¡=1ğ‘š(ğ‘¡)ğœ™(ğ‘¡)2∶ğœ™âˆˆğ‘‹,ğ‘‡î“ğ‘¡=1ğœ™(ğ‘¡)2=1.(2.5) Clearly, ğ‘†ğ‘š,𜆠is bounded below. Then ğœ‡ğ‘š,1(ğœ†)=infğ‘†ğ‘š,ğœ†.
For fixed ğœ™âˆˆğ‘‹, ∑ğœ†â†’ğ‘‡ğ‘¡=0|Δğœ™(ğ‘¡)|2∑−ğœ†ğ‘‡ğ‘¡=1ğ‘š(ğ‘¡)ğœ™2(ğ‘¡) is an affine and so concave function. As the infimum of any collection of concave functions is concave, it follows that ğœ†â†’ğœ‡ğ‘š,1(ğœ†) is a concave function. Also, by considering test functions ğœ™1,ğœ™2∈𑋠such that ∑ğ‘‡ğ‘¡=1ğ‘š(ğ‘¡)ğœ™21(ğ‘¡)<0 and ∑ğ‘‡ğ‘¡=1ğ‘š(ğ‘¡)ğœ™22(ğ‘¡)>0, it is easy to see that ğœ‡ğ‘š,1(ğœ†)→−∠as ğœ†â†’±âˆ. Thus, ğœ†â†’ğœ‡ğ‘š,1(ğœ†) is an increasing function until it attains its maximum and is a decreasing function thereafter.
Since ğœ‡1(0)>0, ğœ†â†’ğœ‡ğ‘š,1(ğœ†) must have exactly two zeros. Thus, (1.3) has exactly two principal eigenvalues, ğœ†ğ‘š,+>0 and ğœ†ğ‘š,−<0, and the corresponding eigenfunctions we denoted by ğœ“ğ‘š,+ and ğœ“ğ‘š,− don't change sign on îğ•‹.

Remark 2.2. From the proof of Theorem 2.1, it is not difficult to see that the following results hold.(i)If ğ‘š(ğ‘¡)≥0 on ğ•‹ and there exist at least one point ğ‘¡0∈𕋠such that ğ‘š(ğ‘¡0)>0, then (1.3) has only one principal eigenvalue ğœ†ğ‘š,+>0.(ii)If ğ‘š(ğ‘¡)≤0 on ğ•‹ and there exist at least one point ğ‘¡0∈𕋠such that ğ‘š(ğ‘¡0)<0, then (1.3) has only one principal eigenvalue ğœ†ğ‘š,−<0.

Now, we give some properties for the above principal eigenvalue(s).

Theorem 2.3. Let ğ‘šâˆ¶ğ•‹â†’â„ change its sign. Assume that there exists ğ‘šî…∶ğ•‹â†’â„ such that ğ‘š(ğ‘¡)≤ğ‘šî…(ğ‘¡) for ğ‘¡âˆˆğ•‹. Then the followings hold. (i)If ğ‘šî… changes sign on ğ•‹, then ğœ†ğ‘šâ€²,−≤ğœ†ğ‘š,−, ğœ†ğ‘šâ€²,+≤ğœ†ğ‘š,+;(ii)If ğ‘šî…≥0, then 0<ğœ†ğ‘šî…,+≤ğœ†ğ‘š,+.

Proof. For convenience, we only prove the case (i). It can be seen that for ğœ†>0, ğ‘†ğ‘š,ğœ†â‰¥ğ‘†ğ‘šâ€²,ğœ†, which implies ğœ‡ğ‘š,1(ğœ†)≥ğœ‡ğ‘šâ€²,1(ğœ†) and consequently, ğœ†ğ‘š,+≥ğœ†ğ‘šâ€²,+.
On the other hand, for ğœ†<0, ğ‘†ğ‘š,ğœ†â‰¤ğ‘†ğ‘šâ€²,ğœ†, which implies ğœ‡ğ‘š,1(ğœ†)≤ğœ‡ğ‘šâ€²,1(ğœ†) and consequently, ğœ†ğ‘š,−≥ğœ†ğ‘šâ€²,−.

Suppose that ğ•‹0={ğ‘+1,ğ‘+2,…,ğ‘−1} is a strict subset of ğ•‹, and ğ‘šğ•‹0 denote the restriction of 𑚠on ğ•‹0. Consider the linear eigenvalue problems Δ2ğ‘¢(ğ‘¡âˆ’1)+ğœ†ğ‘š(ğ‘¡)ğ‘¢(ğ‘¡)=0,ğ‘¡âˆˆğ•‹0,ğ‘¢(ğ‘)=ğ‘¢(ğ‘)=0.(2.6)

Then we get the following result.

Theorem 2.4. (i) If ğ‘š(ğ‘¡)>0 for ğ‘¡âˆˆğ•‹0, then (2.6) has only one positive principal eigenvalue ğœ†ğ‘šğ•‹0,+ such that 0<ğœ†ğ‘š,+<ğœ†ğ‘šğ•‹0,+.
(ii) If ğ‘š(ğ‘¡)<0 for ğ‘¡âˆˆğ•‹0, then (2.6) has only one principal eigenvalue ğœ†ğ‘šğ•‹0,− such that ğœ†ğ‘šğ•‹0,−<ğœ†ğ‘š,−.
(iii) If 𑚠changes its sign on ğ•‹0, then (2.6) has two principal eigenvalue ğœ†ğ‘šğ•‹0,−<0 and ğœ†ğ‘šğ•‹0,+>0 such that ğœ†ğ‘š,+<ğœ†ğ‘šğ•‹0,+,ğœ†ğ‘šğ•‹0,−<ğœ†ğ‘š,−.(2.7)

Proof. Consider the following problems: −Δ2ğ‘¢(ğ‘¡âˆ’1)−ğœ†ğ‘š(ğ‘¡)ğ‘¢(ğ‘¡)=ğœ‡ğ‘¢(ğ‘¡),ğ‘¡âˆˆğ•‹0,ğ‘¢(ğ‘)=ğ‘¢(ğ‘)=0.(2.8) Let ğœ‡ğ‘šğ•‹0,𑘠denote the ğ‘˜th eigenvalue of (2.8), and ğœ“ğ‘šğ•‹0,𑘠the corresponding eigenfunction which has exactly ğ‘˜âˆ’1 generalized zeros in (ğ‘,ğ‘). Let ğ¸={ğ‘¢âˆ¶{ğ‘,…,ğ‘}→â„∣ğ‘¢(ğ‘)=ğ‘¢(ğ‘)=0} be a Banach space under the norm ‖ğ‘¢â€–ğ¸=max{|ğ‘¢(ğ‘¡)|∶ğ‘¡âˆˆ{ğ‘,ğ‘+1,…,ğ‘−1,ğ‘}}. Let ğ‘†ğ‘šğ•‹0,ğœ†=ğ‘−1î“ğ‘¡=ğ‘||||Δğœ™(ğ‘¡)2−ğœ†ğ‘−1î“ğ‘¡=ğ‘+1ğ‘š(ğ‘¡)ğœ™(ğ‘¡)2∶ğœ™âˆˆğ¸,ğ‘−1î“ğ‘¡=ğ‘+1ğœ™(ğ‘¡)2=1.(2.9) We get ğœ‡ğ‘šğ•‹0,1=infğ‘†ğ‘šğ•‹0,ğœ†. Similar to the proof of Theorem 2.1, we get the following assertions.(i)If ğ‘š(ğ‘¡)>0 for ğ‘¡âˆˆğ•‹0, then (2.6) has only one principal eigenvalue ğœ†ğ‘šğ•‹0,+>0.(ii)If ğ‘š(ğ‘¡)<0 for ğ‘¡âˆˆğ•‹0, then (2.6) has only one negative principal eigenvalue ğœ†ğ‘šğ•‹0,−<0.(iii)If 𑚠changes its sign on ğ•‹0, then (2.6) has two principal eigenvalue ğœ†ğ‘šğ•‹0,−<0 and ğœ†ğ‘šğ•‹0,+>0.
Now, we prove that the inequalities in (i), (ii), and (iii) hold. For convenience, suppose that ∑ğ‘−1ğ‘¡=ğ‘+1ğœ“2ğ‘šğ•‹0,1(ğœ†,ğ‘¡)=1.
Let î‚ğœ“ğ‘šğ•‹0,1 denote the extension of ğœ“ğ‘šğ•‹0,1 by zero on ğ•‹, that is, î‚ğœ“ğ‘šğ•‹0,1ğœ“(ğœ†,ğ‘¡)=ğ‘šğ•‹0,1(ğœ†,ğ‘¡),ğ‘¡âˆˆğ•‹0,0,ğ‘¡âˆˆğ•‹â§µğ•‹0.(2.10) Then, ğœ‡ğ‘šğ•‹0,1(ğœ†)=ğ‘−1î“ğ‘¡=ğ‘|||Δğœ“ğ‘šğ•‹0,1|||(ğœ†,ğ‘¡)2−ğœ†ğ‘−1î“ğ‘¡=ğ‘+1ğ‘š(ğ‘¡)ğœ“2ğ‘šğ•‹0,1=(ğœ†,ğ‘¡)ğ‘‡î“ğ‘¡=1|||Δî‚ğœ“ğ‘šğ•‹0,1|||(ğœ†,ğ‘¡)2−ğœ†ğ‘‡î“ğ‘¡=1ğ‘š(ğ‘¡)î‚ğœ“2ğ‘šğ•‹0,1(ğœ†,ğ‘¡)>infğ‘£âˆˆğ‘‹îƒ¯ğ‘‡î“ğ‘¡=1||||Δğ‘£(ğœ†,ğ‘¡)2−ğœ†ğ‘‡î“ğ‘¡=1ğ‘š(ğ‘¡)ğ‘£2(ğœ†,ğ‘¡),ğ‘‡î“ğ‘¡=1ğ‘£2(ğœ†,ğ‘¡)=1=ğœ‡ğ‘š,1(ğœ†),(2.11) which implies the desired results.

3. The Proof of the Main Result

First, we deal with the case ğ‘Ÿ>0.

Recall that ğ¿âˆ¶ğ‘‹â†’ğ‘Œ, ğ¿ğ‘¢(ğ‘¡)=−Δ2ğ‘¢(ğ‘¡âˆ’1).(3.1) Let ğœ,ğœ‰âˆˆğ¶(â„,â„) be such that ğ‘“(ğ‘¢)=ğ‘“0ğ‘¢+ğœ(ğ‘¢),ğ‘“(ğ‘¢)=ğ‘“âˆğ‘¢+ğœ‰(ğ‘¢).(3.2) Clearly, lim|ğ‘¢|→0ğœ(ğ‘¢)ğ‘¢=0,lim|ğ‘¢|→âˆğœ‰(ğ‘¢)ğ‘¢=0.(3.3) Let ̃ğœ‰(ğ‘¢)=max0≤ğ‘ â‰¤ğ‘¢||||ğœ‰(ğ‘ ).(3.4) Then, ̃𜉠is nondecreasing and lim|ğ‘¢|→âˆÌƒğœ‰(ğ‘¢)ğ‘¢=0.(3.5) Let us consider ğ¿ğ‘¢âˆ’ğœ†ğ‘š(ğ‘¡)ğ‘Ÿğ‘“0ğ‘¢âˆ’ğœ†ğ‘š(ğ‘¡)ğ‘Ÿğœ(ğ‘¢)=0,(3.6) as a bifurcation problem from the trivial solution ğ‘¢â‰¡0.

Equation (3.6) can be converted to the equivalent equation ğ‘¢(ğ‘¡)=ğœ†ğ¿âˆ’1ğ‘š(â‹…)ğ‘Ÿğ‘“0ğ‘¢(â‹…)+ğ‘š(â‹…)ğ‘Ÿğœ(ğ‘¢(â‹…))(ğ‘¡).(3.7) Further, we note that ‖ğ¿âˆ’1[ğ‘š(â‹…)ğœ(ğ‘¢(â‹…))]‖=ğ‘œ(‖ğ‘¢â€–) for ğ‘¢ near 0 in ğ‘‹, since ‖‖ğ¿âˆ’1[]‖‖ğ‘š(â‹…)ğœ(ğ‘¢(â‹…))=maxğ‘¡âˆˆğ•‹|||||ğ‘‡î“ğ‘ =1|||||ğº(ğ‘¡,ğ‘ )ğ‘š(ğ‘ )ğœ(ğ‘¢(ğ‘ ))≤ğ¶â‹…maxğ‘ âˆˆğ•‹||||(ğ‘š(ğ‘ )‖ğœğ‘¢(â‹…))‖,(3.8) where 1ğº(ğ‘¡,ğ‘ )=(ğ‘‡+1(ğ‘‡+1−ğ‘¡)ğ‘ ,0≤ğ‘ â‰¤ğ‘¡â‰¤ğ‘‡+1,ğ‘‡+1−ğ‘ )ğ‘¡,0≤ğ‘¡â‰¤ğ‘ â‰¤ğ‘‡+1.(3.9)

The results of Rabinowitz [19] for (3.6) can be stated as follows: from (ğœ†ğ‘š,+/ğ‘Ÿğ‘“0,0), there emanates an unbounded continua ğ’+ of positive solutions in â„×ğ‘‹.

It is clear that any solution of (3.6) of the form (1,ğ‘¢) yields a solution ğ‘¢ of (1.1) and (1.2). So, we focus on the shape of ğ’+ under the conditions (H1)–(H3) or (H1)–(H3′), and we will show that ğ’+ crosses the hyperplane {1}×𑋠in â„×ğ‘‹.

Lemma 3.1. Suppose that (H1)–(H3) hold. Let ğ½=[ğ‘,ğ‘] be a given compact interval in (0,âˆ). Then for all ğ‘Ÿâˆˆğ½, there exists ğ‘€ğ½>0 such that all possible positive solution ğ‘¢ of (1.1) and (1.2) satisfy ‖ğ‘¢â€–ğ‘‹â‰¤ğ‘€ğ½.

Proof. Suppose on the contrary that there exists a sequence {ğ‘¦ğ‘›} of positive solutions for (3.6) with {ğœ‡ğ‘›}⊂ğ½ and ‖ğ‘¦ğ‘›â€–ğ‘‹â†’âˆ. Let ğ›¼âˆˆ(0,1/ğ‘ğ‘„), where ∑ğ‘„=ğ‘‡ğ‘ =1ğº(ğ‘ ,ğ‘ )|ğ‘š(ğ‘ )|. Then, by (H3), there exists ğ‘¢ğ›¼>0 such that ğ‘¢>ğ‘¢ğ›¼ implies ğ‘“(ğ‘¢)<ğ›¼ğ‘¢.
Let ğ¾ğ›¼=maxğ‘¢âˆˆ[0,ğ‘¢ğ›¼]ğ‘“(ğ‘¢) and let ğ´ğ‘›î={ğ‘¡âˆˆğ•‹âˆ£ğ‘¦ğ‘›(ğ‘¡)≤ğ‘¢ğ›¼} and ğµğ‘›î={ğ‘¡âˆˆğ•‹âˆ£ğ‘¦ğ‘›(t)>ğ‘¢ğ›¼}. Then we have ğ‘¦ğ‘›(ğ‘¡)=ğœ‡ğ‘›ğ‘‡î“ğ‘ =1ğ‘¦ğº(ğ‘¡,ğ‘ )ğ‘š(ğ‘ )ğ‘“ğ‘›î€¸(ğ‘ )=ğœ‡ğ‘›î“ğ´ğ‘›î€·ğ‘¦ğº(ğ‘¡,ğ‘ )ğ‘š(ğ‘ )ğ‘“ğ‘›î€¸(ğ‘ )+ğœ‡ğ‘›î“ğµğ‘›î€·ğ‘¦ğº(ğ‘¡,ğ‘ )ğ‘š(ğ‘ )ğ‘“ğ‘›î€¸(ğ‘ )≤ğœ‡ğ‘›ğ¾ğ›¼ğ‘„+ğœ‡ğ‘›î“ğµğ‘›î€·ğ‘¦ğº(ğ‘¡,ğ‘ )ğ‘š(ğ‘ )ğ‘“ğ‘›î€¸(ğ‘ )(3.10) for îğ•‹ğ‘¡âˆˆ. Thus, 1ğœ‡ğ‘›â‰¤ğ¾ğ›¼ğ‘„‖‖ğ‘¦ğ‘›â€–‖ğ‘‹+î“ğµğ‘›ğ‘“ğ‘¦ğº(ğ‘¡,ğ‘ )ğ‘š(ğ‘ )ğ‘›î€¸(ğ‘ )‖‖ğ‘¦ğ‘›â€–‖ğ‘‹.(3.11) On ğµğ‘›,ğ‘¦ğ‘›(ğ‘ )>ğ‘¢ğ›¼ implies ğ‘“(ğ‘¦ğ‘›(ğ‘ ))/‖ğ‘¦ğ‘›â€–ğ‘‹<ğ‘“(ğ‘¦ğ‘›(ğ‘ ))/ğ‘¦ğ‘›(ğ‘ )<ğ›¼. Thus, 1ğœ‡ğ‘›â‰¤ğ¾ğ›¼ğ‘„‖‖ğ‘¦ğ‘›â€–‖ğ‘‹î“+ğ›¼ğµğ‘›||||≤ğ¾ğº(ğ‘ ,ğ‘ )ğ‘š(ğ‘ )ğ›¼ğ‘„‖‖ğ‘¦ğ‘›â€–‖ğ‘‹+ğ›¼ğ‘„.(3.12) Since 0<ğ‘≤ğœ‡ğ‘›â‰¤ğ‘ for all ğ‘›, we have 1/ğœ‡ğ‘›â‰¥1/ğ‘ for all ğ‘›, and, thus, 1ğ‘≤ğ¾ğ›¼ğ‘„‖‖ğ‘¦ğ‘›â€–‖ğ‘‹+ğ›¼ğ‘„.(3.13) By the fact ‖ğ‘¦ğ‘›â€–ğ‘‹â†’∠as ğ‘›â†’âˆ, we get 1ğ‘1≤ğ›¼ğ‘„<ğ‘.(3.14) This contradiction completes the proof.

Lemma 3.2. Suppose that (H1)–(H3) hold. Then Projâ„ğ’+⊃[ğœ†ğ‘š,+/ğ‘Ÿğ‘“0,+âˆ).

Proof. Assume on the contrary that sup{ğœ†âˆ£(ğœ†,ğ‘¦)∈ğ’+}<âˆ, then, there exists a sequence {(ğœ‡ğ‘›,ğ‘¦ğ‘›)}∈ğ’+ such that limğ‘›â†’âˆâ€–‖ğ‘¦ğ‘›â€–‖ğ‘‹=âˆ,ğœ‡ğ‘›<ğ¶0(3.15) for some positive constant ğ¶0 independent of ğ‘›, since ğ’+ is unbounded. On the other hand, ğœ‡ğ‘›>0 for all ğ‘›âˆˆâ„•, since (0,0) is the only solution of (3.6) for ğœ†=0 and ğ’+∩({0}×ğ‘‹)=∅. Meanwhile, {(ğœ‡ğ‘›,ğ‘¦ğ‘›)} satisfy Δ2ğ‘¦ğ‘›(ğ‘¡âˆ’1)+ğœ‡ğ‘›ğ‘“ğ‘¦ğ‘š(ğ‘¡)ğ‘›î€¸(ğ‘¡)ğ‘¦ğ‘›ğ‘¦(ğ‘¡)ğ‘›ğ‘¦(ğ‘¡)=0,ğ‘¡âˆˆğ•‹,ğ‘›(0)=ğ‘¦ğ‘›(ğ‘‡+1)=0.(3.16) By (H3), there exist a positive constant ğ¿ğ‘“>0 such that ğ‘“(ğ‘¢)≤ğ¿ğ‘“ğ‘¢. Define a function ğœ’∶ğ•‹â†’[0,âˆ) by ğ¿ğœ’(ğ‘¡)=ğ‘“,ğ‘š(ğ‘¡)>0,0,ğ‘š(ğ‘¡)<0.(3.17) Then, ğ‘š(ğ‘¡)(ğ‘“(ğ‘¦ğ‘›(ğ‘¡))/ğ‘¦ğ‘›(ğ‘¡))≤ğœ’(ğ‘¡)ğ‘š(ğ‘¡). Let ğ›¾+ be the principal eigenvalue of linear eigenvalue problem Δ2ğ‘£(ğ‘¡âˆ’1)+ğ›¾ğœ’(ğ‘¡)ğ‘š(ğ‘¡)ğ‘£(ğ‘¡)=0,ğ‘¡âˆˆğ•‹,ğ‘£(0)=ğ‘£(ğ‘‡+1)=0.(3.18) Then, by Remark 2.2, ğ›¾+>0. Subsequently, by Theorem 2.3, we know that ğ›¾+≤ğœ‡ğ‘›.(3.19) This combine with Lemma 3.1, limğ‘›â†’âˆğœ‡ğ‘›=âˆ, which contradicts (3.15). Thus, Projâ„ğ’+⊃ğœ†ğ‘š,+ğ‘Ÿğ‘“0î‚¶,âˆ.(3.20)

Now, by Lemma 3.2, ğ’+ crosses the hyperplane {1}×𑋠in â„×ğ‘‹, and, then, Theorem 1.1(i) holds. To obtain Theorem 1.1(ii), we need to prove the following Lemma.

Lemma 3.3. Suppose that (H1), (H2), and (H3′) hold. Then Projâ„ğ’+⊃(0,ğœ†ğ‘š,+/ğ‘Ÿğ‘“0).

Proof. Let {(ğœ‡ğ‘›,ğ‘¦ğ‘›)}⊂ğ’+ be such that |ğœ‡ğ‘›|+‖ğ‘¦ğ‘›â€–ğ‘‹â†’∠as ğ‘›â†’âˆ. Then, Δ2ğ‘¦ğ‘›(ğ‘¡âˆ’1)+ğœ‡ğ‘›î€·ğ‘¦ğ‘š(ğ‘¡)ğ‘“ğ‘›(ğ‘¦ğ‘¡)=0,ğ‘¡âˆˆğ•‹,ğ‘›(0)=ğ‘¦ğ‘›(ğ‘‡+1)=0.(3.21) If {‖ğ‘¦ğ‘›â€–} is bounded, say, ‖ğ‘¦ğ‘›â€–≤ğ‘€1, for some ğ‘€1 independent of ğ‘›, then we may assume that limğ‘›â†’âˆğœ‡ğ‘›=âˆ.(3.22) Note that ğ‘“ğ‘¦ğ‘›î€¸(ğ‘¡)ğ‘¦ğ‘›î‚»(ğ‘¡)≥infğ‘“(ğ‘ )ğ‘ âˆ£0<ğ‘ â‰¤ğ‘€1>0.(3.23) Then, there exist two constants ğ‘€3>0,ğ‘€2>0 such that 0<ğ‘€2<ğ‘“ğ‘¦ğ‘›î€¸(ğ‘¡)ğ‘¦ğ‘›(ğ‘¡)<ğ‘€3.(3.24) Define two functions ğœ’1,ğœ’2∶ğ•‹â†’(0,âˆ) by ğœ’1=ğ‘€2ğ‘€,ğ‘š(ğ‘¡)>0,3ğœ’,ğ‘š(ğ‘¡)<0.2=ğ‘€3ğ‘€,ğ‘š(ğ‘¡)>0,2,ğ‘š(ğ‘¡)<0.(3.25) Let ğœ‚∗,ğœ‚∗ be the positive principal eigenvalue of the linear eigenvalue problems Δ2ğ‘£(ğ‘¡âˆ’1)+ğœ‚ğœ’2(Δğ‘¡)ğ‘š(ğ‘¡)ğ‘£(ğ‘¡)=0,ğ‘¡âˆˆğ•‹,(3.26)ğ‘£(0)=ğ‘£(ğ‘‡+1)=0,(3.27)2ğ‘£(ğ‘¡âˆ’1)+ğœ‚ğœ’1(ğ‘¡)ğ‘š(ğ‘¡)ğ‘£(ğ‘¡)=0,ğ‘¡âˆˆğ•‹,(3.28)ğ‘£(0)=ğ‘£(ğ‘‡+1)=0,(3.29) respectively.
Combining (3.22) and (3.24) with the relation Δ2ğ‘¦ğ‘›(ğ‘¡âˆ’1)+ğ‘Ÿğœ‡ğ‘›ğ‘“ğ‘¦ğ‘š(ğ‘¡)ğ‘›î€¸(ğ‘¡)ğ‘¦ğ‘›ğ‘¦(ğ‘¡)ğ‘›ğ‘¦(ğ‘¡)=0,ğ‘¡âˆˆğ•‹,ğ‘›(0)=ğ‘¦ğ‘›(ğ‘‡+1)=0,(3.30) using Theorem 2.3, we get ğœ‚∗ğ‘Ÿâ‰¤ğœ‡ğ‘›â‰¤ğœ‚∗ğ‘Ÿ.(3.31) This contradicts (3.22). So, {‖ğ‘¦ğ‘›â€–ğ‘‹} is bounded uniformly for all ğ‘›âˆˆâ„•.
Now, taking {(ğœ‡ğ‘›,ğ‘¦ğ‘›)}⊂ğ’+ be such that ‖‖ğ‘¦ğ‘›â€–‖ğ‘‹âŸ¶+âˆ,asğ‘›âŸ¶+âˆ.(3.32) We show that limğ‘›â†’âˆğœ‡ğ‘›=0.
Suppose on the contrary that, choosing a subsequence and relabeling if necessary, ğœ‡ğ‘›â‰¥ğ‘0 for some constant ğ‘0>0. By (3.32), there exists ğ‘¡0∈𕋠such that ğ‘¦ğ‘›(ğ‘¡0)=‖ğ‘¦ğ‘›â€–ğ‘‹ and ğ‘¦ğ‘›(ğ‘¡0)→+∠as ğ‘›â†’+âˆ. Thus, ğœ‡ğ‘›ğ‘“ğ‘¦ğ‘›î€·ğ‘¡0ğ‘¦ğ‘›î€·ğ‘¡0⟶+âˆ,asğ‘›âŸ¶+âˆ.(3.33)
Now, the proof can be divided into two cases.
Case 1 (ğ‘š(ğ‘¡0)>0). Consider the following linear eigenvalue problems Δ2ğ‘£(ğ‘¡âˆ’1)+ğ›¼ğ‘š(ğ‘¡)ğ‘£(ğ‘¡)=0,ğ‘¡=ğ‘¡0,ğ‘£î€·ğ‘¡0ğ‘¡âˆ’1=ğ‘£0+1=0.(3.34) By Theorem 2.4, (3.34) has a positive principal eigenvalue ğ›¼+, and ğœ‡ğ‘›ğ‘“ğ‘¦ğ‘›î€·ğ‘¡0ğ‘¦ğ‘›î€·ğ‘¡0≤ğ›¼+,(3.35) which contradicts (3.33).Case 2 (ğ‘š(ğ‘¡0)<0). Since (ğœ‡ğ‘›,ğ‘¦ğ‘›) is a solution of (3.7), we get 0≥Δ2ğ‘¦ğ‘›î€·ğ‘¡0−1=−ğœ‡ğ‘›î€·ğ‘¡ğ‘Ÿğ‘š0ğ‘“ğ‘¦ğ‘›î€·ğ‘¡0>0.(3.36) This is a contradiction.
Thus, limğ‘›â†’âˆğœ‡ğ‘›=0.

At last, we deal with the case ğ‘Ÿ<0.
Let us consider ğ¿ğ‘¢âˆ’ğœ†ğ‘Ÿğ‘š(ğ‘¡)ğ‘“0ğ‘¢âˆ’ğœ†ğ‘Ÿğ‘š(ğ‘¡)ğœ(ğ‘¢)=0(3.37) as a bifurcation problem from the trivial solution ğ‘¢â‰¡0. The results of Rabinowitz [19] for (3.37) can be stated as follows: from (ğœ†ğ‘š,−/−ğ‘Ÿğ‘“0,0), there emanates an unbounded continua ğ’− of positive solutions in â„×ğ‘‹.
It is clear that any solution of (3.37) of the form (−1,ğ‘¢) yields a solution ğ‘¢ of (1.1) and (1.2). Now, our proofs focus on the shape of ğ’−. It will be proved that when (H1)–(H3) hold, then Projâ„ğ’−⊃(−âˆ,ğœ†ğ‘š,−/−ğ‘Ÿğ‘“0), and when (H1)–(H3′) hold, Projâ„ğ’−⊃(ğœ†ğ‘š,−/−ğ‘Ÿğ‘“0,0), that is, ğ’− crosses the hyperplane {−1}×𑋠in â„×ğ‘‹. Since the proof is similar to the case ğ‘Ÿ>0, we omit it.

Remark 3.4. As an application of Theorem 1.1, let us consider nonlinear discrete problem with indefinite weight Δ2ğ‘¢îğ‘“(ğ‘¡âˆ’1)+ğ‘Ÿîğ‘š(ğ‘¡)(ğ‘¢(ğ‘¡))=0,ğ‘¡âˆˆğ•‹,ğ‘¢(0)=0,ğ‘¢(3)=0,(3.38) where ğ•‹={1,2}, îğ‘šâˆ¶ğ•‹â†’â„ with îğ‘š(1)=1 and îğ‘š(2)=−1, and îâ§âªâ¨âªâ©[],ğ‘“(ğ‘ )=ğ‘ ,ğ‘ âˆˆâˆ’1,12ğ‘ 1+ğ‘ 4,ğ‘ âˆˆ(−âˆ,−1)∪(1,âˆ).(3.39) Then, îğ‘“0îğ‘“=1,âˆ=0.(3.40)
To find the principal eigenvalues of linear eigenvalue problem Δ2ğ‘¢(ğ‘¡âˆ’1)+ğœ†îğ‘š(ğ‘¡)ğ‘¢(ğ‘¡)=0,ğ‘¡âˆˆğ•‹,(3.41)ğ‘¢(0)=0,ğ‘¢(3)=0,(3.42) we rewrite (3.41) to the recursive sequence ğ‘¢î€ºî€»ğ‘¢(ğ‘¡+1)=2−ğœ†îğ‘š(ğ‘¡)(ğ‘¡)−ğ‘¢(ğ‘¡âˆ’1).(3.43) This together with the initial value condition ğ‘¢(0)=0,ğ‘¢(1)=1(3.44) imply that ğ‘¢î€ºî€»ğ‘¢î€ºî€»(2)=2−ğœ†îğ‘š(1)(1)−ğ‘¢(0)=2−ğœ†,ğ‘¢(3)=2−ğœ†îğ‘š(2)ğ‘¢(2)−ğ‘¢(1)=3−ğœ†2.(3.45) The last equation together with the boundary value condition ğ‘¢(3)=0 imply that ğœ†îğ‘š,−√=−3,ğœ†îğ‘š,+=√3.(3.46) Thus by Theorem 1.1(i), (3.38), has a positive solution if √ğ‘Ÿâˆˆ(−âˆ,−√3)∪(3,âˆ).

Acknowledgments

The authors are grateful to the anonymous referee for their valuable suggestions. R. Ma is supported by NSFC (11061030).