Abstract

Our aim in this paper is to establish some explicit bounds of the unknown function in a certain class of nonlinear dynamic inequalities in two independent variables on time scales which are unbounded above. These on the one hand generalize and on the other hand furnish a handy tool for the study of qualitative as well as quantitative properties of solutions of partial dynamic equations on time scales. Some examples are considered to demonstrate the applications of the results.

1. Introduction

During the past decade, a number of dynamic inequalities have been established by some authors which are motivated by some applications, for example, when studying the behavior of solutions of certain classes of dynamic equations, the bounds provided by earlier inequalities are inadequate in applications and some new and specific type of dynamic inequalities on time scales are required. The general idea is to prove a result for a dynamic inequality where the domain of the unknown function is a so-called time scale 𝕋, which may be an arbitrary closed subset of the real numbers . In [1, Theorem 6.1], it is proved that if 𝑢, 𝑓, and 𝑝𝐶rd and 𝑝+, then𝑢Δ(𝑡𝑡)𝑓(𝑡)+𝑝(𝑡)𝑢(𝑡),𝑡0,𝕋,(1.1) implies𝑡𝑢(𝑡)𝑢0𝑒𝑝𝑡,𝑡0+𝑡𝑡0𝑒𝑝(𝑡𝑡,𝜎(𝑠))𝑓(𝑠)Δ𝑠,𝑡0,𝕋,(1.2) where +={𝑓1+𝜇(𝑡)𝑓(𝑡)>0,𝑡𝕋} and is the class of rd-continuous and regressive functions. A function 𝑓𝕋 is said to be right-dense continuous (rd-continuous) provided 𝑓 is continuous at right-dense points and at left-dense points in 𝕋, left-hand limits exist and are finite. The set of all such rd-continuous functions is denoted by 𝐶rd(𝕋). The graininess function 𝜇 for a time scale 𝕋 is defined by 𝜇(𝑡)=𝜎(𝑡)𝑡, and, for any function 𝑓𝕋, the notation 𝑓𝜎(𝑡) denotes 𝑓(𝜎(𝑡)), where 𝜎(𝑡) is the forward jump operator defined by 𝜎(𝑡)=inf{𝑠𝕋𝑠>𝑡}. We say that a function 𝑓𝕋 is regressive provided 1+𝜇(𝑡)𝑓(𝑡)0,𝑡𝕋. The set of all regressive functions on a time scale 𝕋 forms an Abelian group under the addition defined by 𝑝𝑞=𝑝+𝑞+𝜇𝑝𝑞. Throughout this paper, we will assume that sup𝕋= and define the time scale interval [𝑡0,)𝕋 by [𝑡0,)𝕋=[𝑡0,)𝕋. The exponential function 𝑒𝑝(𝑡,𝑠) on time scales is defined by𝑒𝑝(𝑡,𝑠)=exp𝑡𝑠𝜉𝜇(𝜏)(𝑝(𝜏))Δ𝜏,for𝑡,𝑠𝕋,(1.3) where 𝜉(𝑧) is the cylinder transformation, which is given by𝜉(𝑧)=log(1+𝑧),0,𝑧,=0.(1.4) Alternatively, for 𝑝, one can define the exponential function 𝑒𝑝(,𝑡0) to be the unique solution of the IVP 𝑥Δ=𝑝(𝑡)𝑥, with 𝑥(𝑡0)=1. If 𝑝, then 𝑒𝑝(𝑡,𝑠) is real-valued and nonzero on 𝕋. If 𝑝+, then 𝑒𝑝(𝑡,𝑡0) is always positive, 𝑒𝑝(𝑡,𝑡)=1, and 𝑒0(𝑡,𝑠)=1. Note that𝑒𝑝𝑡,𝑡0=exp𝑡𝑡0𝑒𝑝(𝑠)𝑑𝑠,if𝕋=,𝑝𝑡,𝑡0=𝑡1𝑠=𝑡0𝑒(1+𝑝(𝑠)),if𝕋=,𝑝𝑡,𝑡0=𝑡1𝑠=𝑡0(1+(𝑞1)𝑠𝑝(𝑠)),if𝕋=𝑞0.(1.5) The book on the subject of time scales by Bohner and Peterson [1] summarizes and organizes much of time scale calculus. The three most popular examples of calculus on time scales are differential calculus, difference calculus, and quantum calculus (see [2]), that is, when 𝕋=,𝕋=, and 𝕋=𝑞0={𝑞𝑡𝑡0}, where 𝑞>1.

In this paper, we will refer to the (delta) integral which we can define as follows: If 𝐺Δ(𝑡)=𝑔(𝑡), then the Cauchy (delta) integral of 𝑔 is defined by 𝑡𝑎𝑔(𝑠)Δ𝑠=𝐺(𝑡)𝐺(𝑎). It can be shown (see [1]) that if 𝑔𝐶rd(𝕋), then the Cauchy integral 𝐺(𝑡)=𝑡𝑡0𝑔(𝑠)Δ𝑠 exists, 𝑡0𝕋, and satisfies 𝐺Δ(𝑡)=𝑔(𝑡), 𝑡𝕋. There are applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, and combinatorics. A recent cover story article in New Scientist [3] discusses several possible applications. Also, in [1, Theorem 6.4], it is proved that if 𝑢,𝑎, and 𝑝𝐶rd and 𝑝+, then𝑢(𝑡)𝑎(𝑡)+𝑡𝑡0𝑡𝑝(𝑠)𝑢(𝑠)Δ𝑠,𝑡0,𝕋,(1.6) implies that𝑢(𝑡)𝑎(𝑡)+𝑡𝑡0𝑒𝑝(𝑡𝑡,𝜎(𝑠))𝑎(𝑠)𝑝(𝑠)Δ𝑠,𝑡0,𝕋.(1.7) Since (1.7) provides an explicit bound to the unknown function 𝑢(𝑡) and a tool to the study of many qualitative as well as quantitative properties of solutions of dynamic equations, it has become one of the very few classic and most influential results in the theory and applications of dynamic inequalities. Because of its fundamental importance, over the years, many generalizations and analogous results of (1.7) have been established. Since the discovery of the inequalities (1.1)–(1.7), much work has been done, and many papers which deal with various generalizations and extensions have appeared in the literature, we refer the reader to [49] and the references cited therein. On the other hand, a few authors have focused on the theory of partial dynamic equations on time scales [1015]. However, to the best of author’s knowledge, only [1619] have studied integral inequalities useful in the theory of partial dynamic equations on time scales. Before, we give a brief summary of some of the results of dynamic inequalities in two independent variables, we present some basic definitions about calculus in two variables on time scales (for more details, we refer to [12]).

Let 𝕋1 and 𝕋2 be two time scales with at least two points, and consider the time scale intervals Ω1=[𝑡0,)𝕋1 and Ω2=[𝑠0,)𝕋2 for 𝑡0𝕋1 and 𝑠0𝕋2. Let 𝜎1,𝜌1,Δ1 and 𝜎2,𝜌2,Δ2 denote the forward jump operators, backward jump operators, and the delta differentiation operator, respectively, on 𝕋1 and 𝕋2. We say that a real valued function 𝑓 on 𝕋1×𝕋2 at (𝑡,𝑠)ΩΩ1×Ω2 has a Δ1 partial derivative 𝑓Δ1(𝑡,𝑠) with respect to 𝑡 if for each 𝜖>0 there exists a neighborhood 𝑈𝑡 of 𝑡 such that||𝑓𝜎1(𝑡),𝑠𝑓(𝜂,𝑠)𝑓Δ1𝜎(𝑡,𝑠)1||||||(𝑡)𝜂𝜖𝜎(𝑡)𝜂,𝜂𝑈𝑡.(1.8) In this case, we say 𝑓Δ1(𝑡,𝑠) is the (partial delta) derivative of 𝑓(𝑡,𝑠) at 𝑡. We say that a real valued function 𝑓 on 𝕋1×𝕋2 at (𝑡,𝑠)Ω1×Ω2 has a Δ2 partial derivative 𝑓Δ2(𝑡,𝑠) with respect to 𝑠 if for each 𝜖>0 there exists a neighborhood 𝑈𝑠 of 𝑠 such that||𝑓𝑡,𝜎2(𝑠)𝑓(𝑡,𝜉)𝑓Δ2𝜎(𝑡,𝑠)2||||||(𝑡)𝜉𝜖𝜎(𝑡)𝜉,𝜉𝑈𝑠.(1.9) In this case, we say 𝑓Δ2(𝑡,𝑠) is the (partial delta) derivative of 𝑓(𝑡,𝑠) at 𝑠. The function 𝑓 is called rd-continuous in 𝑡 if for every 𝛼2𝕋2 the function 𝑓(𝑡,𝛼2) is rd-continuous on 𝕋1. The function 𝑓 is called rd-continuous in 𝑠 if for every 𝛼1𝕋1 the function 𝑓(𝛼1,𝑠) is rd-continuous on 𝕋2. Now, we are ready to present some results for dynamic inequalities in two independent variables on times scales which are related to the main results in our paper. In [18], the authors proved that if 𝑎,𝑓, and 𝑢 are positive rd-continuous functions and 𝑎 is nonnegative and nondecreasing in each of its variables, then𝑢(𝑥,𝑦)𝑎(𝑥,𝑦)+𝑥𝑥0𝑦𝑦0𝑓(𝑠,𝑡)𝑢(𝑠,𝑡)Δ𝑡Δ𝑠,(1.10) for all (𝑥,𝑦)[𝑥0,)𝕋×[𝑦0,)𝕋, implies𝑢(𝑥,𝑦)𝑎(𝑥,𝑦)𝑒𝐹𝑥,𝑥0,where𝐹=𝑦𝑦0𝑓(𝑥,𝑡)Δ𝑡.(1.11) In [19], the author proved that if 𝑎,𝑏,𝑔,, and 𝑢 are positive continuous real functions defined on 𝕋×𝕋 and 𝛾>1 is a real constant, then𝑢𝛾(𝑥,𝑦)𝑎(𝑥,𝑦)+𝑏(𝑥,𝑦)𝑥𝑥0𝑦𝑦0𝑔(𝑠,𝑡)𝑢𝛾(𝑠,𝑡)+(𝑠,𝑡)𝑢(𝑠,𝑡)Δ𝑡Δ𝑠,(1.12) implies𝑢(𝑥,𝑦)𝑎(𝑥,𝑦)+𝑏(𝑥,𝑦)𝑚(𝑥,𝑦)𝑒𝐺𝑡,𝑡01/𝛾,(1.13) for all (𝑥,𝑦)[𝑥0,)𝕋×[𝑦0,)𝕋, where𝑚(𝑥,𝑦)=𝑥𝑥0𝑦𝑦0𝑎(𝑠,𝑡)𝑔(𝑠,𝑡)+𝛾1𝛾+𝑎(𝑠,𝑡)𝛾(𝑠,𝑡)Δ𝑡Δ𝑠,𝐺(𝑠,𝑡)=𝑦𝑦0𝑔(𝑥,𝑡)+(𝑥,𝑡)𝛾𝑏(𝑥,𝑡)Δ𝑡.(1.14) In this paper, we are concerned with bounds of the double integral nonlinear dynamic inequality in two independent variables𝑢𝛾(𝑡,𝑠)𝑎(𝑡,𝑠)+𝑏(𝑡,𝑠)𝑡𝑡0𝑠𝑠0𝑓(𝜏,𝜂)𝑢𝛿(𝜏,𝜂)+𝑔(𝜏,𝜂)𝑢𝛼(𝜏,𝜂)𝜆Δ𝜂Δ𝜏,(1.15) for all (𝑡,𝑠)[𝑡0,)𝕋×[𝑠0,)𝕋. For (1.15), we will assume the following hypotheses:(𝐻)𝑢,𝑎,𝑏,𝑓,and𝑔arerd-continuouspositivefunctionsonΩ1×Ω2,𝛼,𝛿,𝜆,and𝛾arepositiveconstants.(1.16)

The main aim in this paper is to establish some explicit bounds of the unknown function 𝑢(𝑡,𝑠) of the inequality (1.15). Our results not only complement the results in [18, 19] but also improve the results in [19], in the sense that the results can be applied in the cases when 𝛾1. The main results will be proved by employing the Bernoulli inequality [20, Bernoulli’s inequality]:(1+𝑥)𝛾1+𝛾𝑥,for0<𝛾1,𝑥>1,(1.17) the Young inequality [20]:𝑎𝑎𝑏𝑝𝑝+𝑏𝑞𝑞1,where𝑎,𝑏0,𝑝>1,𝑝+1𝑞=1,(1.18) and the algebraic inequalities [20]:(𝑎+𝑏)𝜆2𝜆1𝑎𝜆+𝑏𝜆,for𝑎,𝑏0,𝜆1,(1.19)(𝑎+𝑏)𝜆𝑎𝜆+𝑏𝜆,for𝑎,𝑏0,0𝜆1.(1.20) Some examples are considered to illustrate the main results.

2. Main Results

Before, we stated and proved the main results and we proved some Lemmas which play important roles in the proofs of the main results. We will assume that the equations or the inequalities possess such nontrivial solutions.

Lemma 2.1. Let 𝕋 be an unbounded time scale with (𝑡0,𝑠0) and (𝑡,𝑠)𝕋×𝕋. Let 𝑔𝑖 for 𝑖=1,2,,𝑛 be functions with 𝑔𝑖(𝑥1(𝑡,𝑠))𝑔𝑖(𝑥2(𝑡,𝑠)) for 𝑖=1,2,,𝑛, where 𝑥𝑖(𝑡,𝑠)𝕋×𝕋 for 𝑖=1,2, whenever 𝑥1𝑥2. Let 𝑣,𝑤𝕋×𝕋 be differentiable with 𝑣Δ𝑡Δ𝑠(𝑡,𝑠)𝑛𝑖=1𝑎𝑖(𝑡,𝑠)𝑔𝑖(𝑣(𝑡,𝑠)),𝑤Δ𝑡Δ𝑠(𝑡,𝑠)𝑛𝑖=1𝑎𝑖(𝑡,𝑠)𝑔𝑖(𝑤(𝑡,𝑠)),(2.1) for all (𝑡,𝑠)𝕋×𝕋. Then, 𝑣(𝑡0,𝑠0)<𝑤(𝑡0,𝑠0) implies 𝑣(𝑡,𝑠)𝑤(𝑡,𝑠) for all (𝑡,𝑠)[𝑡0,)𝕋×[𝑠0,)𝕋.

Proof. The proof is by induction and similar to the proof of Theorem 6.9 in [1] and hence is omitted.

Lemma 2.2. Let 𝕋 be an unbounded time scale with (𝑡0,𝑠0) and (𝑡,𝑠)𝕋×𝕋. Suppose that 𝑔𝑖 is nondecreasing for 𝑖=1,2,,𝑛 and 𝑦𝕋×𝕋+ is such that 𝑔𝑖(𝑦) is rd-continuous. Let 𝑝𝑖 be rd-continuous and positive for 𝑖=1,2,,𝑛 and 𝑓𝕋×𝕋+ differentiable. Then, 𝑦(𝑡,𝑠)𝑓(𝑡,𝑠)+𝑛𝑖=1𝑡𝑡0𝑠𝑠0𝑝𝑖(𝜂,𝜏)𝑔𝑖(𝑦(𝜂,𝑠))Δ𝜂Δ𝜏,(𝑡,𝑠)𝕋×𝕋,(2.2) implies 𝑦(𝑡,𝑠)𝑥(𝑡,𝑠) for all (𝑡,𝑠)[𝑡0,)𝕋×[𝑠0,)𝕋, where 𝑥(𝑡,𝑠) solves the initial value problem 𝑥Δ𝑡Δ𝑠(𝑡,𝑠)=𝑓Δ𝑡Δ𝑠(𝑡,𝑠)+𝑛𝑖=1𝑝𝑖(𝑡,𝑠)𝑔𝑖𝑥𝑡(𝑥(𝑡,𝑠)),0,𝑠0𝑡>𝑓0,𝑠0>0.(2.3)

Proof. Let 𝑣(𝑡,𝑠)=𝑓(𝑡,𝑠)+𝑛𝑖=1𝑡𝑡0𝑠𝑡0𝑝𝑖(𝜏,𝜂)𝑔𝑖(𝑦(𝜏,𝜂))Δ𝜂Δ𝜏,(2.4) for all (𝑡,𝑠)[𝑡0,)𝕋×[𝑠0,)𝕋. Then, 𝑣Δ𝑡Δ𝑠(𝑡,𝑠)=𝑓Δ𝑡Δ𝑠(𝑡,𝑠)+𝑛𝑖=1𝑝𝑖(𝑡,𝑠)𝑔𝑖(𝑦(𝑡,𝑠)),(2.5) for all (𝑡,𝑠)[𝑡0,)𝕋×[𝑠0,)𝕋 and 𝑦(𝑡,𝑠)𝑣(𝑡,𝑠) so that 𝑣Δ𝑡Δ𝑠(𝑡,𝑠)𝑓Δ𝑡Δ𝑠(𝑡,𝑠)+𝑛𝑖=1𝑝𝑖(𝑡,𝑠)𝑔𝑖(𝑣(𝑡,𝑠)),(2.6) for all (𝑡,𝑠)[𝑡0,)𝕋×[𝑠0,)𝕋. Since 𝑣(𝑡0,𝑠0)=𝑓(𝑡0,𝑠0)<𝑥0=𝑥(𝑡0,𝑠0), the comparison Lemma 2.1 yields 𝑣(𝑡,𝑠)𝑥(𝑡,𝑠) for all (𝑡,𝑠)(𝑡0,𝑠0), where 𝑥(𝑡,𝑠) solves the initial value problem (2.3). Hence, since 𝑦(𝑡,𝑠)𝑣(𝑡,𝑠), we obtain 𝑦(𝑡,𝑠)𝑥(𝑡,𝑠). The proof is complete.

Now, we are ready to state and prove the main results in this paper. First, we consider the case when 𝜆1 and 𝛼,𝛿𝛾. For simplicity, we introduce the following notations:𝐹(𝑡,𝑠)=22(𝜆1)𝑡𝑡0𝑠𝑠0𝑓𝜆(𝑎𝜏,𝜂)𝛿/𝛾(𝜏,𝜂)𝜆Δ𝜂Δ𝜏+22(𝜆1)𝑡𝑡0𝑠𝑠0𝑔𝜆(𝑎𝜏,𝜂)𝛼/𝛾(𝜏,𝜂)𝜆Δ𝜂Δ𝜏,𝐺(𝑡,𝑠)=22(𝜆1)𝑓𝜆𝛿(𝑡,𝑠)𝛾𝑎(𝛿/𝛾)1(𝑡,𝑠)𝜆+𝑔𝜆𝛼(𝑡,𝑠)𝛾𝑎(𝛼/𝛾)1(𝑡,𝑠)𝜆.(2.7)

Theorem 2.3. Let 𝕋 be an unbounded time scale with (𝑡0,𝑠0)𝕋×𝕋. Assume that (𝐻) holds, 𝜆,𝛾1  and 𝛼,𝛿𝛾. Then, 𝑢𝛾(𝑡,𝑠)𝑎(𝑡,𝑠)+𝑏(𝑡,𝑠)𝑡𝑡0𝑠𝑠0𝑓(𝜏,𝜂)𝑢𝛿(𝜏,𝜂)+𝑔(𝜏,𝜂)𝑢𝛼(𝜏,𝜂)𝜆Δ𝜂Δ𝜏,(2.8) for (𝑡,𝑠)Ω,  implies that 𝑢(𝑡,𝑠)𝑎1/𝛾1(𝑡,𝑠)+𝛾𝑎(1/𝛾)1(𝑡,𝑠)𝑏(𝑡,𝑠)𝑤(𝑡,𝑠),(𝑡,𝑠)Ω,(2.9) where 𝑤(𝑡) solves the initial value problem 𝑤Δ𝑡Δ𝑠(𝑡,𝑠)=𝐹Δ𝑡Δ𝑠(𝑡,𝑠)+𝑏𝜆(𝑡,𝑠)𝐺(𝑡,𝑠)𝑤𝜆𝑡(𝑡,𝑠),𝑤0,𝑠0>0.(2.10)

Proof. Define a function 𝑦(𝑡,𝑠) by 𝑦(𝑡,𝑠)=𝑡𝑡0𝑠𝑡0𝑓(𝜏,𝜂)𝑢𝛿(𝜏,𝜂)+𝑔(𝜏,𝜂)𝑢𝛼(𝜏,𝜂)𝜆Δ𝜂Δ𝜏.(2.11) This reduces (2.8) to 𝑢𝛾(𝑡,𝑠)𝑎(𝑡,𝑠)+𝑏(𝑡,𝑠)𝑦(𝑡,𝑠),for(𝑡,𝑠)Ω.(2.12) This implies that 𝑢(𝑡,𝑠)(𝑎(𝑡,𝑠)+𝑏(𝑡,𝑠)𝑦(𝑡,𝑠))1/𝛾,for(𝑡,𝑠)Ω.(2.13) Applying the inequality (1.17) (noting that 1/𝛾1), we see that 𝑢(𝑡,𝑠)𝑎1/𝛾1(𝑡,𝑠)+𝛾𝑎(1/𝛾)1(𝑡,𝑠)𝑏(𝑡,𝑠)𝑦(𝑡,𝑠),for(𝑡,𝑠)Ω.(2.14) From (2.13), we obtain 𝑢𝛼(𝑡,𝑠)𝑎𝛼/𝛾(𝑡,𝑠)1+𝑏(𝑡,𝑠)𝑦(𝑡,𝑠)𝑎(𝑡,𝑠)𝛼/𝛾,for(𝑡,𝑠)Ω.(2.15) Applying inequality (1.17) on (2.15) (where 𝛼𝛾), we obtain for (𝑡,𝑠)Ω that 𝑢𝛼(𝑡,𝑠)𝑎𝛼/𝛾𝛼(𝑡,𝑠)1+𝛾𝑏(𝑡,𝑠)𝑎(𝑡,𝑠)𝑦(𝑡,𝑠)=𝑎𝛼/𝛾𝛼(𝑡,𝑠)+𝛾𝑎(𝛼/𝛾)1(𝑡,𝑠)𝑏(𝑡,𝑠)𝑦(𝑡,𝑠).(2.16) Also, from (2.13), we obtain 𝑢𝛿(𝑡,𝑠)𝑎𝛿/𝛾(𝑡,𝑠)1+𝑏(𝑡,𝑠)𝑦(𝑡,𝑠)𝑎(𝑡,𝑠)𝛿/𝛾,for(𝑡,𝑠)Ω.(2.17) Applying inequality (1.17) on (2.17) (where 𝛿𝛾), we have for (𝑡,𝑠)Ω that 𝑢𝛿(𝑡,𝑠)𝑎𝛿/𝛾𝛿(𝑡,𝑠)1+𝛾𝑏(𝑡,𝑠)𝑎(𝑡,𝑠)𝑦(𝑡,𝑠)=𝑎𝛿/𝛾𝛿(𝑡,𝑠)+𝛾𝑎(𝛿/𝛾)1(𝑡,𝑠)𝑏(𝑡,𝑠)𝑦(𝑡,𝑠).(2.18) Combining (2.11), (2.16), and (2.18) and applying the inequality (1.19) (noting that 𝜆1), we have 𝑦(𝑡,𝑠)=𝑡𝑡0𝑠𝑡0𝑓(𝜏,𝜂)𝑢𝛿(𝜏,𝜂)+𝑔(𝜏,𝜂)𝑢𝛼(𝜏,𝜂)𝜆Δ𝜂Δ𝜏2𝜆1𝑡𝑡0𝑠𝑡0𝑓(𝜏,𝜂)𝑢𝛿(𝜏,𝜂)𝜆Δ𝜂Δ𝜏+2𝜆1𝑡𝑡0𝑔(𝜏,𝜂)𝑢𝛼(𝜏,𝜂)𝜆Δ𝜂Δ𝜏2𝜆1𝑡𝑡0𝑠𝑡0𝑓𝜆𝑎(𝜏,𝜂)𝛿/𝛾𝛿(𝜏,𝜂)+𝛾𝑎(𝛿/𝛾)1(𝜏,𝜂)𝑏(𝜏,𝜂)𝑦(𝜏,𝜂)𝜆Δ𝜂Δ𝜏+2𝜆1𝑡𝑡0𝑠𝑡0𝑔𝜆𝑎(𝜏,𝜂)𝛼/𝛾𝛼(𝜏,𝜂)+𝛾𝑎(𝛼/𝛾)1(𝜏,𝜂)𝑏(𝜏,𝜂)𝑦(𝜏,𝜂)𝜆Δ𝜂Δ𝜏.(2.19) This implies that 𝑦(𝑡,𝑠)22(𝜆1)𝑡𝑡0𝑠𝑡0𝑓𝜆(𝑎𝜏,𝜂)(𝛿/𝛾)(𝜏,𝜂)𝜆Δ𝜂Δ𝜏+22(𝜆1)𝑡𝑡0𝑠𝑡0𝑓𝜆𝛿(𝜏,𝜂)𝛾𝑎(𝛿/𝛾)1(𝜏,𝜂)𝑏(𝜏,𝜂)𝜆𝑦𝜆(𝜏,𝜂)Δ𝜂Δ𝜏+22(𝜆1)𝑡𝑡0𝑠𝑡0𝑔𝜆𝑎(𝜏,𝜂)𝛼/𝛾(𝜏,𝜂)𝜆Δ𝜂Δ𝜏+22(𝜆1)𝑡𝑡0𝑠𝑡0𝑔𝜆𝛼(𝜏,𝜂)𝛾𝑎(𝛼/𝛾)1(𝜏,𝜂)𝑏(𝜏,𝜂)𝜆𝑦𝜆(𝜏,𝜂)Δ𝜂Δ𝜏=𝐹(𝑡,𝑠)+𝑡𝑡0𝑠𝑡0𝐺(𝜏,𝜂)𝑦𝜆(𝜏,𝜂)Δ𝜂Δ𝜏,for(𝑡,𝑠)Ω.(2.20) Now an application of Lemma 2.2 (with 𝑛=1 and 𝑔(𝑦)=𝑦𝜆) gives that 𝑦(𝑡,𝑠)<𝑤(𝑡,𝑠),for(𝑡,𝑠)Ω,(2.21) where 𝑤(𝑡,𝑠) solves the initial value problem (2.10). Substituting (2.21) into (2.14), we obtain the desired inequality (2.9). The proof is complete.

Theorem 2.4. Let 𝕋 be an unbounded time scale with (𝑡0,𝑠0)𝕋×𝕋. Assume that (𝐻) holds, 𝜆,𝛾1 and 𝛼,𝛿𝛾. Then, (2.8) implies 𝑢(𝑡,𝑠)𝑎1/𝛾(𝑡,𝑠)+𝑏1/𝛾(𝑡,𝑠)𝑤1/𝛾(𝑡,𝑠),(𝑡,𝑠)Ω,(2.22) where 𝑤(𝑡) solves the initial value problem 𝑤Δ𝑡Δ𝑠(𝑡,𝑠)=𝐹Δ𝑡Δ𝑠(𝑡,𝑠)+𝐺1(𝑡,𝑠)𝑤𝜆(𝛿/𝛾)(𝑡,𝑠)+𝐺2(𝑡,𝑠)𝑤𝜆(𝛼/𝛾)𝑤𝑡(𝑡,𝑠),0,𝑠0>0,(2.23) where 𝐹(𝑡) is defined as in (2.7) and 𝐺1(𝑡,𝑠)=22(𝜆1)𝑓𝜆(𝑡,𝑠)𝑏𝜆𝛿/𝛾(𝑡,𝑠),𝐺2=22(𝜆1)𝑔𝜆(𝑡,𝑠)𝑏𝜆𝛼/𝛾(𝑡,𝑠).(2.24)

Proof. Define a function 𝑦(𝑡,𝑠) by (2.11) and proceed as in the proof of Theorem 2.3 to obtain 𝑢(𝑡,𝑠)(𝑎(𝑡,𝑠)+𝑏(𝑡,𝑠)𝑦(𝑡,𝑠))1/𝛾,for(𝑡,𝑠)Ω.(2.25) Applying the inequality (1.20), we see that 𝑢(𝑡,𝑠)𝑎1/𝛾(𝑡,𝑠)+𝑏1/𝛾(𝑡,𝑠)𝑦1/𝛾(𝑡,𝑠),for(𝑡,𝑠)Ω.(2.26) From (2.25), we obtain 𝑢𝛼(𝑡,𝑠)(𝑎(𝑡,𝑠)+𝑏(𝑡,𝑠)𝑦(𝑡,𝑠))𝛼/𝛾,for(𝑡,𝑠)Ω.(2.27) Applying inequality (1.20) on (2.27) (where 𝛼𝛾), we obtain for (𝑡,𝑠)Ω that 𝑢𝛼(𝑡,𝑠)𝑎𝛼/𝛾(𝑡,𝑠)+𝑏𝛼/𝛾(𝑡,𝑠)𝑦𝛼/𝛾(𝑡,𝑠).(2.28) Also, from (2.25), we have by (1.20) that 𝑢𝛿(𝑡,𝑠)𝑎𝛿/𝛾(𝑡,𝑠)+𝑏𝛿/𝛾(𝑡,𝑠)𝑦𝛿/𝛾(𝑡,𝑠),for(𝑡,𝑠)Ω.(2.29) Combining (2.11), (2.28), and (2.29) and applying the inequality (1.19) (noting that 𝜆1), we have 𝑦(𝑡,𝑠)=𝑡𝑡0𝑠𝑡0𝑓(𝜏,𝜂)𝑢𝛿(𝜏,𝜂)+𝑔(𝜏,𝜂)𝑢𝛼(𝜏,𝜂)𝜆Δ𝜂Δ𝜏2𝜆1𝑡𝑡0𝑠𝑡0𝑓(𝜏,𝜂)𝑢𝛿(𝜏,𝜂)𝜆Δ𝜂Δ𝜏+2𝜆1𝑡𝑡0𝑔(𝜏,𝜂)𝑢𝛼(𝜏,𝜂)𝜆Δ𝜂Δ𝜏2𝜆1𝑡𝑡0𝑠𝑡0𝑓𝜆𝑎(𝜏,𝜂)𝛿/𝛾(𝜏,𝜂)+𝑏𝛿/𝛾(𝜏,𝜂)𝑦𝛿/𝛾(𝜏,𝜂)𝜆Δ𝜂Δ𝜏+2𝜆1𝑡𝑡0𝑠𝑡0𝑔𝜆𝑎(𝜏,𝜂)𝛼/𝛾(𝜏,𝜂)+𝑏𝛼/𝛾(𝜏,𝜂)𝑦𝛼/𝛾(𝜏,𝜂)𝜆Δ𝜂Δ𝜏.(2.30) This implies that 𝑦(𝑡,𝑠)22(𝜆1)𝑡𝑡0𝑠𝑡0𝑓𝜆(𝑎𝜏,𝜂)𝛿/𝛾(𝜏,𝜂)𝜆Δ𝜂Δ𝜏+22(𝜆1)𝑡𝑡0𝑠𝑡0𝑔𝜆(𝑎𝜏,𝜂)𝛼/𝛾(𝜏,𝜂)𝜆Δ𝜂Δ𝜏+22(𝜆1)𝑡𝑡0𝑠𝑡0𝑓𝜆𝑏(𝜏,𝜂)𝛿/𝛾(𝜏,𝜂)𝜆𝑦𝜆(𝛿/𝛾)(𝜏,𝜂)Δ𝜂Δ𝜏+22(𝜆1)𝑡𝑡0𝑠𝑡0𝑔𝜆𝑏(𝜏,𝜂)𝛼/𝛾(𝜏,𝜂)𝜆𝑦𝜆(𝛼/𝛾)(𝜏,𝜂)Δ𝜂Δ𝜏=𝐹(𝑡,𝑠)+𝑡𝑡0𝑠𝑡0𝐺1(𝜏,𝜂)𝑦𝜆(𝛿/𝛾)(𝜏,𝜂)+𝐺2(𝜏,𝜂)𝑦𝜆(𝛼/𝛾)(𝜏,𝜂)Δ𝜂Δ𝜏,(2.31) for (𝑡,𝑠)Ω. Now, an application of Lemma 2.2 (with 𝑛=2,𝑔1(𝑦)=𝑦𝜆(𝛿/𝛾), and 𝑔2(𝑦)=𝑦𝜆(𝛼/𝛾)) gives that 𝑦(𝑡,𝑠)<𝑤(𝑡,𝑠),for(𝑡,𝑠)Ω,(2.32) where 𝑤(𝑡,𝑠) solves the initial value problem (2.23). Substituting (2.32) into (2.26), we obtain the desired inequality (2.22). The proof is complete.

As in the proof of Theorem 2.3 by employing the inequality (1.20) instead of the inequality (1.19), we can obtain an explicit bound for 𝑢(𝑡) when 0𝜆1. This will be presented below in Theorem 2.5 without proof since the proof is similar to the proof of Theorem 2.3. For simplicity, we introduce the following notations:𝐹1(𝑡,𝑠)=𝑡𝑡0𝑠𝑠0𝑓𝜆(𝜏,𝜂)𝑎𝜆(𝛿/𝛾)(+𝜏,𝜂)Δ𝜂Δ𝜏𝑡𝑡0𝑠𝑠0𝑔𝜆(𝜏,𝜂)𝑎𝜆(𝛼/𝛾)(𝐺𝜏,𝜂)Δ𝜂Δ𝜏,3𝑓(𝑡,𝑠)=𝜆𝛿(𝑡,𝑠)𝛾𝑎(𝛿/𝛾)1(𝑡,𝑠)𝜆+𝑔𝜆𝛼(𝑡,𝑠)𝛾𝑎(𝛼/𝛾)1(𝑡,𝑠)𝜆.(2.33)

Theorem 2.5. Let 𝕋 be an unbounded time scale with (𝑡0,𝑠0)𝕋×𝕋. Assume that (𝐻) holds, 𝛾1,0<𝜆1,𝛿𝛾, and 𝛼𝛾. Then, (2.8) implies that 𝑢(𝑡,𝑠)𝑎1/𝛾1(𝑡,𝑠)+𝛾𝑎(1/𝛾)1(𝑡,𝑠)𝑏(𝑡,𝑠)𝑧(𝑡,𝑠),for(𝑡,𝑠)Ω,(2.34) where 𝑧(𝑡) solves the initial value problem 𝑧Δ𝑡Δ𝑡(𝑡)=𝐹Δ𝑡Δ𝑠1(𝑡)+𝐺3(𝑡,𝑠)𝑏𝜆(𝑡,𝑠)𝑧𝜆𝑡(𝑡,𝑠),𝑧0,𝑠0>0.(2.35)

In the following, we apply the Young inequality (1.18) to find a new explicit upper bound for 𝑢(𝑡) of (2.8) when 𝜆1 and 0𝜆1. First, we consider the case when 𝜆1 and assume that 𝜆(𝛼/𝛾)<1 and 𝜆(𝛿/𝛾)<1.

Theorem 2.6. Let 𝕋 be an unbounded time scale with (𝑡0,𝑠0)𝕋×𝕋. Assume that (𝐻) holds, 𝛾,𝜆1and 𝛼,𝛿𝛾 such that (𝜆𝛼/𝛾)<1 and (𝜆𝛿/𝛾)<1. Then, (2.8) implies that 𝑢(𝑡,𝑠)𝑎1/𝛾(𝑡,𝑠)+𝑏1/𝛾(𝑡,𝑠)𝐹31/𝛾(𝑡,𝑠),(𝑡,𝑠)Ω,(2.36) where 𝐹3(𝑡,𝑠)=𝐹0(𝑡,𝑠)+𝑒𝛽(𝑠𝑠0)𝑡,𝑡0𝛼,𝛽=𝜆𝛾+𝛿𝛾,𝐹0(𝑡,𝑠)=𝐹(𝑡,𝑠)+(𝛾𝜆𝛿)𝛾𝑡𝑡0𝐺1(𝜏,𝜂)𝛾/(𝛾𝜆𝛿)+Δ𝜂Δ𝜏(𝛾𝜆𝛼)𝛾𝑡𝑡0𝐺2(𝜏,𝜂)𝛾/(𝛾𝜆𝛼)Δ𝜂Δ𝜏,(2.37) and 𝐹,𝐺1, and 𝐺2 are defined as in (2.7) and (2.24).

Proof. Define a function 𝑦(𝑡,𝑠) by (2.11) and proceed as in the proof of Theorem 2.4 to obtain 𝑢(𝑡,𝑠)𝑎1/𝛾(𝑡,𝑠)+𝑏1/𝛾(𝑡,𝑠)𝑦1/𝛾(𝑡,𝑠),for(𝑡,𝑠)Ω,(2.38)𝑦(𝑡,𝑠)𝐹(𝑡,𝑠)+𝑡𝑡0𝑠𝑡0𝐺1(𝜏,𝜂)𝑦𝜆(𝛿/𝛾)(𝜏,𝜂)+𝐺2(𝜏,𝜂)𝑦𝜆(𝛼/𝛾)(𝜏,𝜂)Δ𝜂Δ𝜏,(2.39) where 𝐹,𝐺1, and 𝐺2 are defined as in (2.7) and (2.24). Applying the Young inequality (1.18) on the term 𝐺1𝑦𝜆(𝛿/𝛾) with 𝑞=𝛾/𝜆𝛿>1 and 𝑝=𝛾/(𝛾𝜆𝛿)>1, we see that 𝐺1𝑦𝜆(𝛿/𝛾)(𝛾𝜆𝛿)𝛾𝐺1𝛾/(𝛾𝜆𝛿)+𝜆𝛿𝛾𝑦.(2.40) Again applying the Young inequality (1.18) on the term 𝐺2𝑦𝜆(𝛼/𝛾) with 𝑞=𝛾/𝜆𝛼>1 and 𝑝=𝛾/(𝛾𝜆𝛼)>1, we see that 𝐺2𝑦𝜆(𝛼/𝛾)(𝛾𝜆𝛼)𝛾𝐺2𝛾/(𝛾𝜆𝛼)+𝜆𝛼𝛾𝑦.(2.41) Substituting (2.40) and (2.41) into (2.39), we have 𝑦(𝑡,𝑠)𝐹(𝑡,𝑠)+(𝛾𝜆𝛿)𝛾𝑡𝑡0𝑠𝑡0𝐺1(𝜏,𝜂)𝛾/(𝛾𝜆𝛿)+Δ𝜂Δ𝜏(𝛾𝜆𝛼)𝛾𝑡𝑡0𝑠𝑡0𝐺2(𝜏,𝜂)𝛾/(𝛾𝜆𝛼)+Δ𝜂Δ𝜏𝜆𝛼𝛾+𝜆𝛿𝛾𝑡𝑡0𝑠𝑠0𝑦(𝜏,𝜂)Δ𝜂Δ𝜏,(𝑡,𝑠)Ω.(2.42) From the definitions of 𝐹0(𝑡) and 𝛽, we get that 𝑦(𝑡,𝑠)𝐹0(𝑡,𝑠)+𝛽𝑡𝑡0𝑠𝑡0𝑦(𝜏,𝜂)Δ𝜂Δ𝜏,for(𝑡,𝑠)Ω.(2.43) Applying the inequality (1.10) with 𝑓(𝑡,𝑠)=𝛽, we have 𝑦(𝑡,𝑠)<𝐹0(𝑡,𝑠)+𝑒𝛽(𝑠𝑠0)𝑡,𝑡0,(𝑡,𝑠)Ω.(2.44) Substituting (2.44) into (2.38), we get the desired inequality (2.36). The proof is complete.

Theorem 2.7. Let 𝕋 be an unbounded time scale with (𝑡0,𝑠0)𝕋×𝕋. Assume that (𝐻) holds, 𝛾1,0<𝜆1, and 𝛼,𝛿𝛾. Then, (2.8) implies that 𝑢(𝑡,𝑠)𝑎1/𝛾1(𝑡,𝑠)+𝛾𝑎(1/𝛾)1(𝑡,𝑠)𝑏(𝑡,𝑠)𝐹4(𝑡,𝑠),for(𝑡,𝑠)Ω,(2.45) where 𝐹4(𝑡,𝑠)=𝐹2(𝑡,𝑠)+𝑒𝜆(𝑠𝑠0)𝑡,𝑡0,𝐹2(𝑡,𝑠)=𝐹1(𝑡,𝑠)+(1𝜆)𝑡𝑡0𝑠𝑠0𝐺3(𝜏,𝜂)1/(1𝜆)Δ𝜂Δ𝜏,(2.46) and 𝐹1 and 𝐺3 are defined as in (2.33).

Proof. Define a function 𝑦(𝑡,𝑠) by (2.11) and proceed as in the proof of Theorem 2.3 to obtain 𝑢(𝑡,𝑠)𝑎1/𝛾1(𝑡,𝑠)+𝛾𝑎(1/𝛾)1(𝑡,𝑠)𝑏(𝑡,𝑠)𝑦(𝑡,𝑠),for(𝑡,𝑠)Ω,(2.47)𝑦(𝑡,𝑠)𝐹1(𝑡,𝑠)+𝑡𝑡0𝑠𝑠0𝐺3(𝑠)𝑦𝜆(𝜏,𝜂)Δ𝜂Δ𝜏,for(𝑡,𝑠)Ω,(2.48) where 𝐹1 and 𝐺3 are defined in (2.33). Applying the Young inequality (1.18) on the term 𝐺3𝑦𝜆 with 𝑞=1/𝜆>1 and 𝑝=1/(1𝜆)>1, we see that 𝐺3𝑦𝜆𝐺(1𝜆)31/1𝜆+𝜆𝑦.(2.49) This and (2.48) imply that 𝑦(𝑡,𝑠)𝐹1(𝑡,𝑠)+(1𝜆)𝑡𝑡0𝑠𝑠0𝐺3(𝜏,𝜂)1/(1𝜆)+Δ𝜂Δ𝜏𝑡𝑡0𝑠𝑠0𝜆𝑦(𝜏,𝜂)Δ𝜂Δ𝜏.(2.50) Using the definition of 𝐹2(𝑡,𝑠), we get that 𝑦(𝑡,𝑠)𝐹2(𝑡,𝑠)+𝜆𝑡𝑡0𝑠𝑠0𝑦(𝜏,𝜂)Δ𝜂Δ𝜏,for(𝑡,𝑠)Ω.(2.51) Applying the inequality (1.10) with 𝑓(𝑡,𝑠)=𝜆, we have 𝑦(𝑡,𝑠)<𝐹2(𝑡,𝑠)+𝑒𝜆(𝑠𝑠0)𝑡,𝑡0,(𝑡,𝑠)Ω.(2.52) Substituting (2.52) into (2.47), we get the desired inequality (2.45). The proof is complete.

Next in the following, we consider the case when 𝛾1 and establish some new explicit bounds of the unknown function 𝑢(𝑡,𝑠) of (2.8).

Theorem 2.8. Let 𝕋 be an unbounded time scale with (𝑡0,𝑠0)𝕋×𝕋. Assume that (𝐻) holds, 𝜆1,𝛾1, and 𝛼𝜆,𝛿𝜆𝛾. Then, (2.8) implies that 𝑢𝛾𝐻(𝑡,𝑠)𝑎(𝑡,𝑠)+𝑏(𝑡,𝑠)(𝑡,𝑠)+𝑒𝛽1(𝑠𝑠0)𝑡,𝑡0,for(𝑡,𝑠)Ω,(2.53) where 𝛽1=(𝜆𝛼/𝛾)+(𝜆𝛿/𝛾) and 𝐻(𝑡,𝑠)=2𝜆𝛿((1/𝛾)1)𝑡𝑡0𝑠𝑡0𝑓𝜆(𝜏,𝜂)𝑎𝜆𝛿/𝛾(𝜏,𝜂)Δ𝜂Δ𝜏+2𝜆𝛼((1/𝛾)1)𝑡𝑡0𝑠𝑡0𝑔𝜆(𝜏,𝜂)𝑎𝜆𝛼/𝛾(𝜏,𝜂)Δ𝜂Δ𝜏+2𝜆𝛿((1/𝛾)1)(𝛾𝜆𝛿)𝛾𝑡𝑡0𝑠𝑡0𝑓𝜆(𝜏,𝜂)𝑏𝜆𝛿/𝛾(𝜏,𝜂)𝛾/(𝛾𝜆𝛿)Δ𝜂Δ𝜏+2𝜆𝛼((1/𝛾)1)(𝛾𝜆𝛼)𝛾𝑡𝑡0𝑠𝑡0𝑔𝜆(𝜏,𝜂)𝑏𝜆𝛼/𝛾(𝜏,𝜂)𝛾/(𝛾𝜆𝛼)Δ𝜂Δ𝜏.(2.54)

Proof. Define a function 𝑦(𝑡,𝑠) by 𝑦(𝑡,𝑠)=𝑡𝑡0𝑠𝑡0𝑓(𝜏,𝜂)𝑢𝛿(𝜏,𝜂)+𝑔(𝜏,𝜂)𝑢𝛼(𝜏,𝜂)𝜆Δ𝜂Δ𝜏.(2.55) This reduces (2.8) to 𝑢𝛾(𝑡,𝑠)𝑎(𝑡,𝑠)+𝑏(𝑡,𝑠)𝑦(𝑡,𝑠),for(𝑡,𝑠)Ω.(2.56) This implies that 𝑢(𝑡,𝑠)(𝑎(𝑡,𝑠)+𝑏(𝑡,𝑠)𝑦(𝑡,𝑠))1/𝛾,for(𝑡,𝑠)Ω.(2.57) Applying the inequality (1.19) (noting that 𝛾1), we see that 𝑢(𝑡,𝑠)2(1/𝛾)1𝑎1/𝛾(𝑡,𝑠)+𝑏1/𝛾(𝑡,𝑠)𝑦1/𝛾(𝑡,𝑠),for(𝑡,𝑠)Ω.(2.58) From (2.58), we obtain 𝑢𝛼(𝑡,𝑠)2𝛼((1/𝛾)1)𝑎1/𝛾(𝑡,𝑠)+𝑏1/𝛾(𝑡,𝑠)𝑦1/𝛾(𝑡,𝑠)𝛼,for(𝑡,𝑠)Ω.(2.59) Also, from (2.58), we obtain 𝑢𝛿(𝑡,𝑠)2𝛿((1/𝛾)1)𝑎1/𝛾(𝑡,𝑠)+𝑏1/𝛾(𝑡,𝑠)𝑦1/𝛾(𝑡,𝑠)𝛿,for(𝑡,𝑠)Ω.(2.60) Combining (2.55), (2.59), and (2.60) and applying the inequality (1.19) (noting that 𝜆1), we have 𝑦(𝑡,𝑠)=𝑡𝑡0𝑠𝑡0𝑓(𝜏,𝜂)𝑢𝛿(𝜏,𝜂)+𝑔(𝜏,𝜂)𝑢𝛼(𝜏,𝜂)𝜆Δ𝜂Δ𝜏𝑡𝑡0𝑠𝑡0𝑓(𝜏,𝜂)𝑢𝛿(𝜏,𝜂)𝜆+Δ𝜂Δ𝜏𝑡𝑡0𝑔(𝜏,𝜂)𝑢𝛼(𝜏,𝜂)𝜆Δ𝜂Δ𝜏2𝜆𝛿((1/𝛾)1)𝑡𝑡0𝑠𝑡0𝑓𝜆𝑎(𝜏,𝜂)1/𝛾(𝑡,𝑠)+𝑏1/𝛾(𝑡,𝑠)𝑦1/𝛾(𝑡,𝑠)𝜆𝛿Δ𝜂Δ𝜏+2𝜆𝛼((1/𝛾)1)𝑡𝑡0𝑠𝑡0𝑔𝜆𝑎(𝜏,𝜂)1/𝛾(𝑡,𝑠)+𝑏1/𝛾(𝑡,𝑠)𝑦1/𝛾(𝑡,𝑠)𝛼𝜆Δ𝜂Δ𝜏.(2.61) This implies (noting that 𝛼𝜆1 and 𝛿𝜆1) that 𝑦(𝑡,𝑠)2𝜆𝛿((1/𝛾)1)𝑡𝑡0𝑠𝑡0𝑓𝜆(𝜏,𝜂)𝑎𝜆𝛿/𝛾(𝜏,𝜂)Δ𝜂Δ𝜏+2𝜆𝛿((1/𝛾)1)𝑡𝑡0𝑠𝑡0𝑓𝜆(𝜏,𝜂)𝑏𝜆𝛿/𝛾(𝜏,𝜂)𝑦𝜆𝛿/𝛾(𝜏,𝜂)Δ𝜂Δ𝜏+2𝜆𝛼((1/𝛾)1)𝑡𝑡0𝑠𝑡0𝑔𝜆(𝜏,𝜂)𝑎𝜆𝛼/𝛾(𝜏,𝜂)Δ𝜂Δ𝜏+2𝜆𝛼((1/𝛾)1)𝑡𝑡0𝑠𝑡0𝑔𝜆(𝜏,𝜂)𝑏𝜆𝛼/𝛾(𝜏,𝜂)𝑦𝜆𝛼/𝛾(𝜏,𝜂)Δ𝜂Δ𝜏.(2.62) Applying the Young inequality (1.18) on the term 𝐻1𝑦𝜆(𝛿/𝛾) with 𝑞=𝛾/𝜆𝛿>1 and 𝑝=𝛾/(𝛾𝜆𝛿)>1, we see that 𝐻1𝑦𝜆(𝛿/𝛾)(𝛾𝜆𝛿)𝛾𝐻1𝛾/(𝛾𝜆𝛿)+𝜆𝛿𝛾𝑦,(2.63) where 𝐻1=𝑓𝜆𝑏𝜆𝛿/𝛾. Again applying the Young inequality (1.18) on the term 𝐻2𝑦𝜆(𝛼/𝛾) with 𝑞=𝛾/𝜆𝛼>1 and 𝑝=𝛾/(𝛾𝜆𝛼)>1, we see that 𝐻2𝑦𝜆(𝛼/𝛾)(𝛾𝜆𝛼)𝛾𝐻2𝛾/(𝛾𝜆𝛼)+𝜆𝛼𝛾𝑦,(2.64) where 𝐻2=𝑔𝜆𝑏𝜆𝛼/𝛾. Combining (2.62)–(2.64), we have 𝑦(𝑡,𝑠)𝐻(𝑡,𝑠)+𝛽1𝑡𝑡0𝑠𝑡0𝑦(𝜏,𝜂)Δ𝜂Δ𝜏.(2.65) Applying the inequality (1.10) on (2.65) with 𝑓(𝑡,𝑠)=𝛽1, we have 𝑦(𝑡,𝑠)<𝐻(𝑡,𝑠)+𝑒𝛽1(𝑠𝑠0)𝑡,𝑡0,(𝑡,𝑠)Ω.(2.66) Substituting (2.66) into (2.56), we get the desired inequality (2.45). The proof is complete.

Remark 2.9. The above results can be extended to the general inequality 𝑢𝛾(𝑡,𝑠)𝑎(𝑡,𝑠)+𝑏(𝑡,𝑠)𝑡𝑡0𝑠𝑠0𝐿(𝜏,𝜂,𝑢(𝜏,𝜂))Δ𝜂Δ𝜏,(2.67) when 𝐿𝐿(𝜏,𝜂,𝑢)𝐿(𝜏,𝜂,𝑣)1(𝜏,𝜂,𝑣)(𝑢𝑣)𝛿+𝐿2(𝜏,𝜂,𝑣)(𝑢𝑣)𝛼𝜆.(2.68) In fact, by using the new substitution 𝑦(𝑡,𝑠)=𝑡𝑡0𝑠𝑠0𝐿(𝜏,𝜂,𝑢(𝜏,𝜂))Δ𝜂Δ𝜏,(2.69) the inequality (2.67) can be written as 𝑢𝛾(𝑡,𝑠)𝑎(𝑡,𝑠)+𝑏(𝑡,𝑠)𝑦(𝑡,𝑠),(2.70) and then, since 𝛾1, we have 𝑢(𝑡,𝑠)𝐴(𝑡,𝑠)+𝐵(𝑡,𝑠)𝑦(𝑡,𝑠),(2.71) where 𝐴(𝑡,𝑠)=𝑎1/𝛾(𝑡,𝑠) and 𝐵(𝑡,𝑠)=𝑎(1/𝛾)1(𝑡,𝑠)𝑏(𝑡,𝑠). This implies that 𝑦(𝑡,𝑠)=𝑡𝑡0𝑠𝑠0𝐿(𝜏,𝜂,𝑢(𝜏,𝜂))Δ𝜂Δ𝜏𝑡𝑡0𝑠𝑠0[]+𝐿(𝜏,𝜂,𝐴(𝜏,𝜂)+𝐵(𝜏,𝜂)𝑦(𝜏,𝜂))𝐿(𝜏,𝜂,𝐴(𝜏,𝜂))Δ𝜂Δ𝜏𝑡𝑡0𝑠𝑠0𝐿(𝜏,𝜂,𝐴(𝜏,𝜂))Δ𝜂Δ𝜏.(2.72) Using (2.68) in the last inequality, we get an inequality similar to the inequality (2.8) and then follow the proof of the above results to find some explicit bounds of (2.8). The details are left to the reader.

3. Applications

In this section, we present some applications of our main results.

Example 3.1. Consider the partial dynamic equation on time scales (𝑢𝛾(𝑡,𝑠))Δ𝑡Δ𝑠𝑡=𝐻(𝑡,𝑠,𝑢(𝑡,𝑠))+(𝑡,𝑠),(𝑡,𝑠)Ω0,𝕋×𝑠0,𝕋,(3.1) with initial boundary conditions 𝑢𝑡,𝑠0𝑡=𝑎(𝑡)>,𝑢0𝑡,𝑠=𝑏(𝑠)>,𝑎0𝑠=𝑏0=0,(3.2) where 𝛾1 is a constant and 𝐻 and are rd-continuous functions on Ω,𝑎[𝑡0,)𝕋+ and 𝑏[𝑡0,)𝕋+ are rd-continuous functions. Assume that ||||||||𝐻(𝑡,𝑠,𝑢)𝑓(𝑡,𝑠)𝑢(𝑡,𝑠)𝛿||||+𝑔(𝑡,𝑠)𝑢(𝑡,𝑠)𝛼,(3.3) where 𝑓(𝑡,𝑠) and 𝑔(𝑡,𝑠) are nonnegative rd-continuous functions for (𝑡,𝑠)Ω and 𝛼,𝛿<𝛾. If 𝑢(𝑡,𝑠) is a solution of (3.1)-(3.2), then 𝑢(𝑡,𝑠) satisfies ||||𝑢(𝑡,𝑠)𝑎1/𝛾(𝑡,𝑠)+𝐴1/𝛾(𝑡,𝑠),(𝑡,𝑠)Ω,(3.4) where 𝑎(𝑡,𝑠)=𝑎𝛾(𝑡)+𝑏𝛾(𝑠)+𝑡𝑡0𝑠𝑠0||||(𝜏,𝜂)Δ𝜂Δ𝜏,𝐴(𝑡,𝑠)=𝐻0(𝑡,𝑠)+𝑒𝛽(𝑠𝑠0)𝑡,𝑡0𝛼,𝛽=𝛾+𝛿𝛾,𝐻0(𝑡,𝑠)=𝑡𝑡0𝑠𝑠0𝑓(𝜏,𝜂)𝑎𝛿/𝛾+(𝜏,𝜂)Δ𝜂Δ𝜏𝑡𝑡0𝑠𝑠0𝑔(𝜏,𝜂)𝑎𝛼/𝛾+((𝜏,𝜂)Δ𝜂Δ𝜏𝛾𝛿)𝛾𝑡𝑡0𝑠𝑠0(𝑓(𝜏,𝑠))𝛾/(𝛾𝛿)+(Δ𝜂Δ𝜏𝛾𝛼)𝛾𝑡𝑡0𝑠𝑠0(𝑔(𝜏,𝜂))𝛾/(𝛾𝛼)Δ𝜂Δ𝜏.(3.5) In fact, the solution of (3.1)-(3.2) satisfies ||||𝑢(𝑡,𝑠)𝛾=𝑎𝛾(𝑡)+𝑏𝛾(𝑡)+𝑡𝑡0𝑠𝑠0(𝜏,𝜂)Δ𝜂Δ𝜏+𝑡𝑡0𝑠𝑠0𝐻(𝜏,𝜂,𝑢(𝜏,𝜂))Δ𝜂Δ𝜏,(3.6) for (𝑡,𝑠)Ω.Therefore, ||||𝑢(𝑡,𝑠)𝛾𝑎(𝑡,𝑠)+𝑡𝑡0𝑠𝑠0||||𝐻(𝜏,𝜂,𝑢(𝜏,𝜂))Δ𝜂Δ𝜏,for(𝑡,𝑠)Ω.(3.7) It follows from (3.3) and (3.7) that ||||𝑢(𝑡,𝑠)𝛾𝑎(𝑡,𝑠)+𝑡𝑡0𝑠𝑠0||||𝑓(𝜏,𝑠)𝑢(𝜏,𝜂)𝛿||||+𝑔(𝜏,𝜂)𝑢(𝜏,𝜂)𝛼Δ𝜂Δ𝜏,(3.8) for (𝑡,𝑠)Ω. Applying Theorem 2.6 on (3.8) with 𝜆=1 and 𝑏(𝑡,𝑠)=1, we obtain (3.4).

Example 3.2. Consider the equation 𝑢𝛾𝑡(𝑡,𝑠)=𝐻(𝑡,𝑠,𝑢(𝑡,𝑠))+(𝑡,𝑠),(𝑡,𝑠)Ω0,𝕋×𝑠0,𝕋,(3.9) where 𝛾1 is a constant and 𝐻 and are rd-continuous on Ω,𝑎[𝑡0,)𝕋+ and 𝑏[𝑡0,)𝕋+ are rd-continuous functions. Assume that ||||||||𝐻(𝑡,𝑠,𝑢)𝑓(𝑡,𝑠)𝑢(𝑡,𝑠)𝛿||||+𝑔(𝑡,𝑠)𝑢(𝑡,𝑠)𝛼,(3.10) where 𝑓(𝑡,𝑠) and 𝑔(𝑡,𝑠) are nonnegative rd-continuous functions for (𝑡,𝑠)Ω and 𝛼,𝛿<𝛾. If 𝑢(𝑡,𝑠) is a solution of (3.1)-(3.2), then 𝑢(𝑡,𝑠) satisfies ||||||||𝑢(𝑡,𝑠)(𝑡,𝑠)1/𝛾+1𝛾||||(𝑡,𝑠)(1/𝛾)1𝐵1/𝛾(𝑡,𝑠),(𝑡,𝑠)Ω,(3.11) where 𝐵(𝑡,𝑠)=𝐹(𝑡,𝑠)+(1𝜆)𝑡𝑡0𝑡𝑠0𝐺(𝜏,𝜂)1/(1𝜆)Δ𝜂Δ𝜏+𝑒𝜆(𝑠𝑠0)𝑡,𝑡0,𝐹(𝑡,𝑠)=𝑡𝑡0𝑠𝑠0𝑓𝜆(𝜏,𝜂)𝑎𝜆(𝛿/𝛾)(𝜏,𝜂)+𝑔𝜆(𝜏,𝜂)𝑎𝜆(𝛼/𝛾)(𝐺𝜏,𝜂)Δ𝜂Δ𝜏,𝑓(𝑡,𝑠)=𝜆𝛿(𝑡,𝑠)𝛾𝑎(𝛿/𝛾)1(𝑡,𝑠)𝜆+𝑔𝜆𝛼(𝑡,𝑠)𝛾𝑎(𝛼/𝛾)1(𝑡,𝑠)𝜆.(3.12) In fact, the solution of (3.9) satisfies ||||𝑢(𝑡,𝑠)𝛾||||+(𝑡,𝑠)𝑡𝑡0𝑠𝑠0||||𝐻(𝜏,𝜂,𝑢(𝜏,𝜂))Δ𝜂Δ𝜏,for(𝑡,𝑠)Ω.(3.13) It follows from (3.10) and (3.13) that ||||𝑢(𝑡,𝑠)𝛾||||+(𝑡,𝑠)𝑡𝑡0𝑠𝑠0||||𝑓(𝜏,𝑠)𝑢(𝜏,𝜂)𝛿||||+𝑔(𝜏,𝜂)𝑢(𝜏,𝜂)𝛼𝜆Δ𝜂Δ𝜏,(3.14) for (𝑡,𝑠)Ω. Applying Theorem 2.7 on (3.14) with 𝑏(𝑡,𝑠)=1, we obtain (3.11).

Example 3.3. Assume that 𝕋= and consider the partial differential equation 𝜕𝑢𝜕𝑠𝛾1𝜕(𝑡,𝑠)𝜕𝑡𝑢(𝑡,𝑠)+𝐻(𝑡,𝑠,𝑢(𝑡,𝑠))=(𝑡,𝑠),(𝑡,𝑠)Ω,(3.15) where Ω=[0,)×[0,), with initial boundary conditions 𝑢(𝑡,0)=𝑎(𝑡)>0,𝑢(0,𝑠)=𝑏(𝑠)>0,𝑎(0)=𝑏(0)=0.(3.16) Assume that 𝛾1 is a constant and 𝐻[0,)×[0,)× and [0,)×[0,), 𝑎+ and 𝑏+ are continuous functions. Also, we assume that ||||||||𝐻(𝑡,𝑠,𝑢)𝑓(𝑡,𝑠)𝑢(𝑡,𝑠)𝛿||||+𝑔(𝑡,𝑠)𝑢(𝑡,𝑠)𝛼,(3.17) where 𝑓(𝑡,𝑠) and 𝑔(𝑡,𝑠) are nonnegative continuous functions for (𝑡,𝑠)Ω and 𝛼,𝛿<𝛾. If 𝑢(𝑡,𝑠) is a solution of (3.1)-(3.2), then 𝑢(𝑡,𝑠) satisfies ||||𝑢(𝑡,𝑠)𝑎1/𝛾(𝑡,𝑠)+𝛾1/𝛾𝐵1/𝛾(𝑡,𝑠),(𝑡,𝑠)Ω,(3.18) where 𝑎(𝑡,𝑠)=𝑎𝛾(𝑡)+𝑏𝛾(𝑠)+𝛾𝑡𝑡0𝑠𝑠0||||(𝜏,𝜂)Δ𝜂Δ𝜏,𝐵(𝑡,𝑠)=𝐻0(𝑡,𝑠)+𝑒𝛽(𝑠𝑠0)𝑡,𝑡0𝛼,𝛽=𝛾+𝛿𝛾,𝐻0(𝑡,𝑠)=𝑡𝑡0𝑠𝑠0𝑓(𝜏,𝜂)𝑎𝛿/𝛾(𝜏,𝜂)Δ𝜂Δ𝜏+𝑡𝑡0𝑠𝑠0𝑔(𝜏,𝜂)𝑎𝛼/𝛾+(𝜏,𝜂)Δ𝜂Δ𝜏(𝛾𝛿)𝛾𝑡𝑡0𝑠𝑠0(𝑓(𝜏,𝑠))𝛾/(𝛾𝛿)+(Δ𝜂Δ𝜏𝛾𝛼)𝛾𝑡𝑡0𝑠𝑠0(𝑔(𝜏,𝜂))𝛾/(𝛾𝛼)Δ𝜂Δ𝜏.(3.19) In fact, the solution formula of (3.15)-(3.16), after integration twice, is given by ||||𝑢(𝑡,𝑠)𝛾𝑎𝛾(𝑡)𝑏𝛾(𝑡)+𝛾𝑡𝑡0𝑠𝑠0𝐻(𝜏,𝜂,𝑢(𝜏,𝜂))Δ𝜂Δ𝜏=𝛾𝑡𝑡0𝑠𝑠0(𝜏,𝜂)Δ𝜂Δ𝜏,for(𝑡,𝑠)Ω.(3.20) Therefore, ||||𝑢(𝑡,𝑠)𝛾𝑎(𝑡,𝑠)+𝛾𝑡𝑡0𝑠𝑠0||||𝐻(𝜏,𝜂,𝑢(𝜏,𝜂))Δ𝜂Δ𝜏,for(𝑡,𝑠)Ω.(3.21) It follows from (3.17) and (3.21) that ||||𝑢(𝑡,𝑠)𝛾𝑎(𝑡,𝑠)+𝛾𝑡𝑡0𝑠𝑠0||||𝑓(𝜏,𝑠)𝑢(𝜏,𝜂)𝛿||||+𝑔(𝜏,𝜂)𝑢(𝜏,𝜂)𝛼Δ𝜂Δ𝜏,(3.22) for (𝑡,𝑠)Ω. Applying Theorem 2.6 on (3.22) with 𝜆=1 and 𝑏(𝑡,𝑠)=𝛾, we obtain (3.18).

Acknowledgments

The author is very grateful to the referees for their valuable remarks and comments which significantly contributed to the quality of the paper. This project was supported by King Saud University, Dean-ship of Scientific Research, College of Science Research Centre.