`Discrete Dynamics in Nature and SocietyVolume 2011, Article ID 982309, 17 pageshttp://dx.doi.org/10.1155/2011/982309`
Review Article

## Solution and Attractivity for a Rational Recursive Sequence

1Mathematics Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Received 15 February 2011; Accepted 26 March 2011

Copyright © 2011 E. M. Elsayed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2001.
2. V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, vol. 256 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.
3. N. Battaloglu, C. Cinar, and I. Yalçınkaya, The Dynamics of the Difference Equation, vol. 97, Ars Combinatoria, 2010.
4. C. Çinar, “On the positive solutions of the difference equation ${x}_{n+1}=a{x}_{n-1}/\left(1+b{x}_{n}{x}_{n-1}\right)$,” Applied Mathematics and Computation, vol. 156, no. 2, pp. 587–590, 2004.
5. E. M. Elabbasy, H. El-Metwally, and E. M. Elsayed, “Global attractivity and periodic character of a fractional difference equation of order three,” Yokohama Mathematical Journal, vol. 53, no. 2, pp. 89–100, 2007.
6. E. M. Elabbasy, H. El-Metwally, and E. M. Elsayed, “On the difference equation ${x}_{n+1}=\left({a}_{0}{x}_{n}+{a}_{1}{x}_{n-1}+\dots +{a}_{k}{x}_{n-k}\right)/\left({b}_{0}{x}_{n}+{b}_{1}{x}_{n-1}+\dots +{b}_{k}{x}_{n-k}\right)$,” Mathematica Bohemica, vol. 133, no. 2, pp. 133–147, 2008.
7. E. M. Elabbasy and E. M. Elsayed, “Dynamics of a rational difference equation,” Chinese Annals of Mathematics. Series B, vol. 30, no. 2, pp. 187–198, 2009.
8. E. M. Elabbasy and E. M. Elsayed, “Global attractivity and periodic nature of a difference equation,” World Applied Sciences Journal, vol. 12, no. 1, pp. 39–47, 2011.
9. H. El-Metwally, E. A. Grove, and G. Ladas, “A global convergence result with applications to periodic solutions,” Journal of Mathematical Analysis and Applications, vol. 245, no. 1, pp. 161–170, 2000.
10. H. El-Metwally, E. A. Grove, G. Ladas, R. Levins, and M. Radin, “On the difference equation ${x}_{n+1}=\alpha +{x}_{n-1}{e}^{-xn}$,” Nonlinear Analysis: Theory, Methods & Applications, vol. 47, no. 7, pp. 4623–4634, 2001.
11. H. El-Metwally, “Global behavior of an economic model,” Chaos, Solitons and Fractals, vol. 33, no. 3, pp. 994–1005, 2007.
12. H. El-Metwally, E. A. Grove, G. Ladas, and H. D. Voulov, “On the global attractivity and the periodic character of some difference equations,” Journal of Difference Equations and Applications, vol. 7, no. 6, pp. 837–850, 2001.
13. E. M. Elsayed, “On the solution of recursive sequence of order two,” Fasciculi Mathematici, no. 40, pp. 5–13, 2008.
14. E. M. Elsayed, “Dynamics of a recursive sequence of higher order,” Communications on Applied Nonlinear Analysis, vol. 16, no. 2, pp. 37–50, 2009.
15. E. M. Elsayed, “Dynamics of recursive sequence of order two,” Kyungpook Mathematical Journal, vol. 50, no. 4, pp. 483–497, 2010.
16. E. M. Elsayed, “On the difference equation ${x}_{n+1}={x}_{n-5}/\left(-1+{x}_{n-2}{x}_{n-5}\right)$,” International Journal of Contemporary Mathematical Sciences, vol. 3, no. 33–36, pp. 1657–1664, 2008.
17. E. M. Elsayed, “Qualitative behavior of a difference equation of order three,” Acta Scientiarum Mathematicarum, vol. 75, no. 1-2, pp. 113–129, 2009.
18. E. M. Elsayed, “Qualitative behavior of a rational recursive sequence,” Indagationes Mathematicae. New Series, vol. 19, no. 2, pp. 189–201, 2008.
19. E. Elsayed, “On the global attractivity and the solution of recursive sequence,” Studia Scientiarum Mathematicarum Hungarica, vol. 47, no. 3, pp. 401–418, 2010.
20. E. M. Elsayed, “Qualitative properties for a fourth order rational difference equation,” Acta Applicandae Mathematicae, vol. 110, no. 2, pp. 589–604, 2010.
21. E. M. Elsayed, “On the global attractivity and the periodic character of a recursive sequence,” Opuscula Mathematica, vol. 30, no. 4, pp. 431–446, 2010.
22. E. M. Elsayed, B. Iričanin, and S. Stević, “On the max-type equation,” Ars Combinatoria, vol. 95, pp. 187–192, 2010.
23. A. E. Hamza and R. Khalaf-Allah, “On the recursive sequence ${x}_{n+1}=A{\prod }_{i=l}^{k}{x}_{n-2i-1}/\left(B+C{\prod }_{i=l}^{k-1}{x}_{n-2i}\right)$,” Computers & Mathematics with Applications, vol. 56, no. 7, pp. 1726–1731, 2008.
24. M. Aloqeili, “Dynamics of a rational difference equation,” Applied Mathematics and Computation, vol. 176, no. 2, pp. 768–774, 2006.
25. A. M. Amleh, V. Kirk, and G. Ladas, “On the dynamics of ${x}_{n+1}=\left(a+b{x}_{n-1}\right)/\left(A+B{x}_{n-2}\right)$,” Mathematical Sciences Research Hot-Line, vol. 5, no. 7, pp. 1–15, 2001.
26. C. Çinar, “On the positive solutions of the difference equation ${x}_{n+1}={x}_{n-1}/\left(1+a{x}_{n}{x}_{n-1}\right)$,” Applied Mathematics and Computation, vol. 158, no. 3, pp. 809–812, 2004.
27. C. Çinar, “On the positive solutions of the difference equation ${x}_{n+1}={x}_{n-1}/\left(-1+a{x}_{n}{x}_{n-1}\right)$,” Applied Mathematics and Computation, vol. 158, no. 3, pp. 809–812, 2004.
28. E. M. Elabbasy, H. El-Metwally, and E. M. Elsayed, “On the difference equation ${x}_{n+1}=a{x}_{n}-b{x}_{n}/\left(c{x}_{n}-d{x}_{n-1}\right)$,” Advances in Difference Equations, vol. 2006, Article ID 82579, 10 pages, 2006.
29. E. M. Elabbasy, H. El-Metwally, and E. M. Elsayed, “On the difference equation ${x}_{n+1}=\alpha {x}_{n-k}/\left(\beta +\gamma {\prod }_{i=0}^{k}{x}_{n-i}\right)$,” Journal of Concrete and Applicable Mathematics, vol. 5, no. 2, pp. 101–113, 2007.
30. T. F. Ibrahim, “On the third order rational difference equation ${x}_{n+1}={x}_{n}{x}_{n-2}/\left({x}_{n-1}\left(a+b{x}_{n}{x}_{n-2}\right)\right)$,” International Journal of Contemporary Mathematical Sciences, vol. 4, no. 25–28, pp. 1321–1334, 2009.
31. R. Karatas, C. Cinar, and D. Simsek, “On positive solutions of the difference equation ${x}_{n+1}={x}_{n-5}/\left(1+{x}_{n-2}{x}_{n-5}\right)$,” International Journal of Contemporary Mathematical Sciences, vol. 1, no. 9–12, pp. 495–500, 2006.
32. I. Yalçinkaya and C. Çinar, “On the dynamics of the difference equation ${x}_{n+1}=a{x}_{n-k}/\left(b+c{x}_{n}^{p}\right)$,” Fasciculi Mathematici, no. 42, pp. 141–148, 2009.
33. X. Yang, “On the global asymptotic stability of the difference equation ${x}_{n+1}=\left({x}_{n-1}{x}_{n-2}+{x}_{n-3}+a\right)/\left({x}_{n-1}+{x}_{n-2}{x}_{n-3}+a\right)$,” Applied Mathematics and Computation, vol. 171, no. 2, pp. 857–861, 2005.
34. M. R. S. Kulenović and Z. Nurkanović, “Global behavior of a three-dimensional linear fractional system of difference equations,” Journal of Mathematical Analysis and Applications, vol. 310, no. 2, pp. 673–689, 2005.
35. W.-T. Li and H.-R. Sun, “Dynamics of a rational difference equation,” Applied Mathematics and Computation, vol. 163, no. 2, pp. 577–591, 2005.
36. A. Rafiq, “Convergence of an iterative scheme due to Agarwal et al,” Rostocker Mathematisches Kolloquium, no. 61, pp. 95–105, 2006.
37. M. Saleh and M. Aloqeili, “On the difference equation ${y}_{n+1}=A+{y}_{n}/{y}_{n-k}$ with $A<0$,” Applied Mathematics and Computation, vol. 176, no. 1, pp. 359–363, 2006.
38. D. Simsek, C. Cinar, and I. Yalcinkaya, “On the recursive sequence ${x}_{n+1}={x}_{n-3}/\left(1+{x}_{n-1}\right)$,” International Journal of Contemporary Mathematical Sciences, vol. 1, no. 9–12, pp. 475–480, 2006.
39. C. Wang and S. Wang, “Global behavior of equilibrium point for A class of fractional difference equation,” in Proceedings of 7th Asian Control Conference (ASCC '09), pp. 288–291, Hong Kong, August 2009.
40. C.-Y. Wang, S. Wang, and X.-P. Yan, “Global asymptotic stability of 3-species mutualism models with diffusion and delay effects,” Discrete Dynamics in Nature and Society, vol. 2009, Article ID 317298, 20 pages, 2009.
41. C.-Y. Wang, F. Gong, S. Wang, L.-R. Li, and Q.-H. Shi, “Asymptotic behavior of equilibrium point for a class of nonlinear difference equation,” Advances in Difference Equations, vol. 2009, Article ID 214309, 8 pages, 2009.
42. I. Yalçınkaya, “Global asymptotic stability in a rational difference equation,” Selçuk Journal of Applied Mathematics, vol. 6, no. 2, pp. 59–68, 2005.
43. I. Yalçinkaya, “On the difference equation ${x}_{n+1}=\alpha +{x}_{n-2}/{x}_{n}^{k}$,” Polytechnica Posnaniensis. Institutum Mathematicum. Fasciculi Mathematici, no. 42, pp. 133–139, 2009.
44. I. Yalçinkaya, “On the difference equation ${x}_{n+1}=\alpha +{x}_{n-m}/{x}_{n}^{k}$,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 805460, 8 pages, 2008.
45. I. Yalçinkaya, “On the global asymptotic stability of a second-order system of difference equations,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 860152, 12 pages, 2008.
46. I. Yalçinkaya, C. Çinar, and M. Atalay, “On the solutions of systems of difference equations,” Advances in Difference Equations, vol. 2008, Article ID 143943, 9 pages, 2008.
47. E. M. E. Zayed and M. A. El-Moneam, “On the rational recursive sequence ${x}_{n+1}=\left(\alpha +\beta {x}_{n}+\gamma {x}_{n-1}\right)/\left(A+\beta {x}_{n}+C{x}_{n-1}\right)$,” Communications on Applied Nonlinear Analysis, vol. 12, no. 4, pp. 15–28, 2005.
48. E. M. E. Zayed and M. A. El-Moneam, “On the rational recursive sequence ${x}_{n+1}=\left(\alpha {x}_{n}+\beta {x}_{n-1}+\gamma {x}_{n-2}+\gamma {x}_{n-3}\right)/\left(A{x}_{n}+B{x}_{n-1}+C{x}_{n-2}+D{x}_{n-3}\right)$,” Communications on Applied Nonlinear Analysis, vol. 12, pp. 15–28, 2005.