`Discrete Dynamics in Nature and SocietyVolume 2012, Article ID 241303, 11 pageshttp://dx.doi.org/10.1155/2012/241303`
Research Article

## On the Dynamics of the Recursive Sequence

1Department of Mathematics, Faculty of Science and Arts, Bülent Ecevit University, 67100 Zonguldak, Turkey
2Department of Mathematics, Faculty of Science and Arts, ANS Campus, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey

Received 5 July 2012; Accepted 13 September 2012

Academic Editor: M. De la Sen

Copyright © 2012 Mehmet Gümüş et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. A. M. Amleh, E. A. Grove, G. Ladas, and D. A. Georgiou, “On the recursive sequence ${x}_{n+1}=\alpha +\left({x}_{n-1}/{x}_{n}\right)$,” Journal of Mathematical Analysis and Applications, vol. 233, no. 2, pp. 790–798, 1999.
2. M. Gümüş and Ö. Öcalan, “Some notes on the difference equation ${x}_{n+1}=\alpha +\left({x}_{n-1}^{}/{x}_{n}^{k}\right)$,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 258502, 12 pages, 2012.
3. S. Stević, “On the recursive sequence ${x}_{n+1}={\alpha }_{n}+\left({x}_{n-1}^{}/{x}_{n}^{}\right)$. II,” Dynamics of Continuous, Discrete & Impulsive Systems A, vol. 10, no. 6, pp. 911–916, 2003.
4. S. Stević, “On the recursive sequence ${x}_{n+1}={\alpha }_{n}+\left({x}_{n-1}^{}/{x}_{n}^{}\right)$,” International Journal of Mathematical Sciences, vol. 2, no. 2, pp. 237–243, 2003.
5. K. S. Berenhaut and S. Stević, “The behaviour of the positive solutions of the difference equation ${x}_{n}=A+\left({x}_{n-2}/{x}_{n-1}\right)$p,” Journal of Difference Equations and Applications, vol. 12, no. 9, pp. 909–918, 2006.
6. H. M. El-Owaidy, A. M. Ahmed, and M. S. Mousa, “On asymptotic behaviour of the difference equation ${x}_{n+1}=\alpha +\left({x}_{n-1}^{p}/{x}_{n}^{p}\right)$,” Journal of Applied Mathematics & Computing, vol. 12, no. 1-2, pp. 31–37, 2003.
7. S. Stević, “On the recursive sequence ${x}_{n+1}=\alpha +\left({x}_{n-1}^{p}/{x}_{n}^{p}\right)$,” Journal of Applied Mathematics & Computing, vol. 18, no. 1-2, pp. 229–234, 2005.
8. S. Stević, “On the recursive sequence ${x}_{n+1}=\alpha +\left({x}_{n}^{p}/{x}_{n-1}^{p}\right)$,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 34517, 9 pages, 2007.
9. R. DeVault, C. Kent, and W. Kosmala, “On the recursive sequence ${x}_{n+1}=p+\left({x}_{n-k}/{x}_{n}\right)$,” Journal of Difference Equations and Applications, vol. 9, no. 8, pp. 721–730, 2003.
10. Ö. Öcalan, “Boundedness and stability behavior of the recursive sequence ${x}_{n+1}=A+\left({x}_{n-k}^{p}/{x}_{n-m}^{q}\right)$,” In press.
11. C. J. Schinas, G. Papaschinopoulos, and G. Stefanidou, “On the recursive sequence ${x}_{n+1}=A+\left({x}_{n-1}^{p}/{x}_{n}^{q}\right)$,” Advences in Difference Equations, vol. 2009, Article ID 327649, 11 pages, 2009.
12. S. Stević, “On the recursive sequence ${x}_{n}=\text{}1+{\sum }_{i=1}^{k}{\alpha }_{i}{x}_{n-{p}_{i}}/{\sum }_{j=1}^{m}{\beta }_{j}{x}_{n-{q}_{j}}$,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 39404, 7 pages, 2007.
13. S. Stević, “On a class of higher-order difference equations,” Chaos, Solitons and Fractals, vol. 42, no. 1, pp. 138–145, 2009.
14. S. N. Elaydi, An Introduction to Difference Equations, Springer, New York, NY, USA, 1996.
15. V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, vol. 256, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.
16. M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2002.