Abstract

The numerical and analytic solutions of the mixed problem for multidimensional fractional hyperbolic partial differential equations with the Neumann condition are presented. The stable difference scheme for the numerical solution of the mixed problem for the multidimensional fractional hyperbolic equation with the Neumann condition is presented. Stability estimates for the solution of this difference scheme and for the first- and second-order difference derivatives are obtained. A procedure of modified Gauss elimination method is used for solving this difference scheme in the case of one-dimensional fractional hyperbolic partial differential equations. He's variational iteration method is applied. The comparison of these methods is presented.

1. Introduction

It is known that various problems in fluid mechanics (dynamics, elasticity) and other areas of physics lead to fractional partial differential equations. Methods of solutions of problems for fractional differential equations have been studied extensively by many researchers (see, e.g., [1โ€“15] and the references given therein).

The role played by stability inequalities (well posedness) in the study of boundary-value problems for hyperbolic partial differential equations is well known (see, e.g., [16โ€“29]).

In the present paper, finite difference and He's iteration methods for the approximate solutions of the mixed boundary-value problem for the multidimensional fractional hyperbolic equation ๐œ•2๐‘ข(๐‘ก,๐‘ฅ)๐œ•๐‘ก2โˆ’๐‘š๎“๐‘Ÿ=1๎€ท๐‘Ž๐‘Ÿ(๐‘ฅ)๐‘ข๐‘ฅ๐‘Ÿ๎€ธ๐‘ฅ๐‘Ÿ+๐ท๐‘ก1/2๎€ท๐‘ฅ๐‘ข(๐‘ก,๐‘ฅ)+๐œŽ๐‘ข(๐‘ก,๐‘ฅ)=๐‘“(๐‘ก,๐‘ฅ),๐‘ฅ=1,โ€ฆ,๐‘ฅ๐‘š๎€ธโˆˆฮฉ,0<๐‘ก<1,๐‘ข(0,๐‘ฅ)=0,๐‘ข๐‘ก(0,๐‘ฅ)=0,๐‘ฅโˆˆฮฉ;๐œ•๐‘ข(๐‘ก,๐‘ฅ)๐œ•๐‘›=0,๐‘ฅโˆˆ๐‘†,(1.1) are studied. Here ฮฉ is the unit open cube in the ๐‘š-dimensional Euclidean space: โ„๐‘šโˆถ{ฮฉ=๐‘ฅ=(๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘š)โˆถ0<๐‘ฅ๐‘—<1,1โ‰ค๐‘—โ‰ค๐‘š} with boundary ๐‘†,ฮฉ=ฮฉโˆช๐‘†; ๐‘Ž๐‘Ÿ(๐‘ฅ)(๐‘ฅโˆˆฮฉ) and ๐‘“(๐‘ก,๐‘ฅ)(๐‘กโˆˆ(0,1),๐‘ฅโˆˆฮฉ) are given smooth functions and ๐‘Ž๐‘Ÿ(๐‘ฅ)โ‰ฅ๐‘Ž>0.

1.1. Definition

The Caputo fractional derivative of order ๐›ผ>0 of a continuous function ๐‘ข(๐‘ก,๐‘ฅ) is defined by ๐ท๐›ผ๐‘Ž+1๐‘ข(๐‘ก,๐‘ฅ)=๎€œฮ“(1โˆ’๐›ผ)๐‘ก๐‘Ž๐‘ข๎…ž(๐‘ก,๐‘ฅ)(๐‘กโˆ’๐‘ )๐›ผ๐‘‘๐‘ ,(1.2) where ฮ“(โ‹…) is the gamma function.

2. The Finite Difference Method

In this section, we consider the first order of accuracy in ๐‘ก and the second-orders of accuracy in space variablesโ€™ stable difference scheme for the approximate solution of problem (1.1). The stability estimates for the solution of this difference scheme and its first- and second-order difference derivatives are established. A procedure of modified Gauss elimination method is used for solving this difference scheme in the case of one-dimensional fractional hyperbolic partial differential equations.

2.1. The Difference Scheme: Stability Estimates

The discretization of problem (1.1) is carried out in two steps. In the first step, let us define the grid space ๎‚ฮฉโ„Ž=๎€ฝ๐‘ฅ=๐‘ฅ๐‘Ÿ=๎€ทโ„Ž1๐‘Ÿ1,โ€ฆ,โ„Ž๐‘š๐‘Ÿ๐‘š๎€ธ๎€ท๐‘Ÿ,๐‘Ÿ=1,โ€ฆ,๐‘Ÿ๐‘š๎€ธ,0โ‰ค๐‘Ÿ๐‘—โ‰ค๐‘๐‘—,โ„Ž๐‘—๐‘๐‘—๎€พ,ฮฉ=1,๐‘—=1,โ€ฆ,๐‘šโ„Ž=๎‚ฮฉโ„Žโˆฉฮฉ,๐‘†โ„Ž=๎‚ฮฉโ„Žโˆฉ๐‘†.(2.1) We introduce the Banach space ๐ฟ2โ„Ž=๐ฟ2(๎‚ฮฉโ„Ž) of the grid functions ๐œ‘โ„Ž(๐‘ฅ)={๐œ‘(โ„Ž1๐‘Ÿ1,โ€ฆ,โ„Ž๐‘š๐‘Ÿ๐‘š)} defined on ๎‚ฮฉโ„Ž, equipped with the norm โ€–โ€–๐œ‘โ„Žโ€–โ€–๐ฟ2(๎‚ฮฉโ„Ž)=โŽ›โŽœโŽœโŽ๎“๐‘ฅโˆˆฮฉโ„Ž||๐œ‘โ„Ž||(๐‘ฅ)2โ„Ž1โ‹ฏโ„Ž๐‘šโŽžโŽŸโŽŸโŽ 1/2.(2.2) To the differential operator ๐ด๐‘ฅ generated by problem (1.1), we assign the difference operator ๐ด๐‘ฅโ„Ž by the formula ๐ด๐‘ฅโ„Ž๐‘ขโ„Ž=โˆ’๐‘š๎“๐‘Ÿ=1๎‚ต๐‘Ž๐‘Ÿ(๐‘ฅ)๐‘ขโ„Žโˆ’๐‘ฅ๐‘Ÿ๎‚ถ๐‘ฅ๐‘Ÿ,๐‘—+๐œŽ๐‘ขโ„Ž๐‘ฅ(2.3) acting in the space of grid functions ๐‘ขโ„Ž(๐‘ฅ), satisfying the conditions ๐ทโ„Ž๐‘ขโ„Ž(๐‘ฅ)=0 for all ๐‘ฅโˆˆ๐‘†โ„Ž. It is known that ๐ด๐‘ฅโ„Ž is a self-adjoint positive definite operator in ๐ฟ2(๎‚ฮฉโ„Ž). With the help of ๐ด๐‘ฅโ„Ž we arrive at the initial boundary value problem ๐‘‘2๐‘ฃโ„Ž(๐‘ก,๐‘ฅ)๐‘‘๐‘ก2+๐ท๐‘ก1/2๐‘ฃโ„Ž(๐‘ก,๐‘ฅ)+๐ด๐‘ฅโ„Ž๐‘ฃโ„Ž(๐‘ก,๐‘ฅ)=๐‘“โ„Ž(๐‘ก,๐‘ฅ),0โ‰ค๐‘กโ‰ค1,๐‘ฅโˆˆฮฉโ„Ž,๐‘ฃโ„Ž(0,๐‘ฅ)=0,๐‘‘๐‘ฃโ„Ž(0,๐‘ฅ)๎‚๐‘‘๐‘ก=0,๐‘ฅโˆˆฮฉ,(2.4) for an infinite system of ordinary fractional differential equations.

In the second step, we replace problem (2.4) by the first order of accuracy difference scheme ๐‘ขโ„Ž๐‘˜+1(๐‘ฅ)โˆ’2๐‘ขโ„Ž๐‘˜(๐‘ฅ)+๐‘ขโ„Ž๐‘˜โˆ’1(๐‘ฅ)๐œ2+1โˆš๐œ‹๐‘˜๎“๐‘š=1ฮ“(๐‘˜โˆ’๐‘š+1/2)๐‘ข(๐‘˜โˆ’๐‘š)!โ„Ž๐‘šโˆ’๐‘ขโ„Žmโˆ’1๐œ1/2+๐ด๐‘ฅโ„Ž๐‘ขโ„Ž๐‘˜+1=๐‘“โ„Ž๐‘˜๎‚ฮฉ(๐‘ฅ),๐‘ฅโˆˆโ„Ž,๐‘“โ„Ž๐‘˜๎€ท๐‘ก(๐‘ฅ)=๐‘“๐‘˜๎€ธ,๐‘ฅ,๐‘ก๐‘˜๎‚ฮฉ=๐‘˜๐œ,1โ‰ค๐‘˜โ‰ค๐‘โˆ’1,๐‘๐œ=1,๐‘ฅโˆˆโ„Ž,๐‘ขโ„Ž1(๐‘ฅ)โˆ’๐‘ขโ„Ž0(๐‘ฅ)๐œ=0,๐‘ขโ„Ž0๎‚ฮฉ(๐‘ฅ)=0,๐‘ฅโˆˆโ„Ž.(2.5) Here โˆซฮ“(๐‘˜โˆ’๐‘š+1/2)=โˆž0๐‘ก๐‘˜โˆ’๐‘šโˆ’1/2๐‘’โˆ’๐‘ก๐‘‘๐‘ก.

Theorem 2.1. Let ๐œ and ๎”|โ„Ž|=โ„Ž21+โ‹ฏ+โ„Ž2๐‘š be sufficiently small numbers. Then, the solutions of difference scheme (2.5) satisfy the following stability estimates: max1โ‰ค๐‘˜โ‰ค๐‘โ€–โ€–๐‘ขโ„Ž๐‘˜โ€–โ€–๐ฟ2โ„Ž+max1โ‰ค๐‘˜โ‰ค๐‘โ€–โ€–โ€–โ€–๐‘ขโ„Ž๐‘˜โˆ’๐‘ขโ„Ž๐‘˜โˆ’1๐œโ€–โ€–โ€–โ€–๐ฟ2โ„Žโ‰ค๐ถ1max1โ‰ค๐‘˜โ‰ค๐‘โˆ’1โ€–โ€–๐‘“โ„Ž๐‘˜โ€–โ€–๐ฟ2โ„Ž,max1โ‰ค๐‘˜โ‰ค๐‘โˆ’1โ€–โ€–๐œโˆ’2๎€ท๐‘ขโ„Ž๐‘˜+1โˆ’2๐‘ขโ„Ž๐‘˜+๐‘ขโ„Ž๐‘˜โˆ’1๎€ธโ€–โ€–๐ฟ2โ„Ž+max1โ‰ค๐‘˜โ‰ค๐‘โ€–โ€–๎€ท๐‘ขโ„Ž๐‘˜๎€ธโˆ’๐‘ฅ๐‘Ÿ๐‘ฅ๐‘Ÿโ€–โ€–๐ฟ2โ„Žโ‰ค๐ถ2๎‚ธโ€–โ€–๐‘“โ„Ž1โ€–โ€–๐ฟ2โ„Ž+max2โ‰ค๐‘˜โ‰ค๐‘โˆ’1โ€–โ€–๐œโˆ’1๎€ท๐‘“โ„Ž๐‘˜โˆ’๐‘“โ„Ž๐‘˜โˆ’1๎€ธโ€–โ€–๐ฟ2โ„Ž๎‚น.(2.6)
Here ๐ถ1 and ๐ถ2 do not depend on ๐œ, โ„Ž, and ๐‘“โ„Ž๐‘˜,1โ‰ค๐‘˜โ‰ค๐‘โˆ’1.

The proof of Theorem 2.1 is based on the self-adjointness and positive definitness of operator ๐ด๐‘ฅโ„Ž in ๐ฟ2โ„Ž and on the following theorem on the coercivity inequality for the solution of the elliptic difference problem in ๐ฟ2โ„Ž.

Theorem 2.2. For the solutions of the elliptic difference problem ๐ด๐‘ฅโ„Ž๐‘ขโ„Ž(๐‘ฅ)=๐œ”โ„Ž(๐‘ฅ),๐‘ฅโˆˆฮฉโ„Ž,๐ทโ„Ž๐‘ขโ„Ž(๐‘ฅ)=0,๐‘ฅโˆˆ๐‘†โ„Ž,(2.7) the following coercivity inequality holds [30]: ๐‘š๎“๐‘Ÿ=1โ€–โ€–โ€–๐‘ขโ„Ž๐‘ฅ๐‘Ÿโˆ’๐‘ฅ๐‘Ÿโ€–โ€–โ€–๐ฟ2โ„Žโ€–โ€–๐œ”โ‰ค๐ถโ„Žโ€–โ€–๐ฟ2โ„Ž.(2.8)

Finally, applying this difference scheme, the numerical methods are proposed in the following section for solving the one-dimensional fractional hyperbolic partial differential equation. The method is illustrated by numerical examples.

2.2. Numerical Results

For the numerical result, the mixed problem ๐ท2๐‘ก๐‘ข(๐‘ก,๐‘ฅ)+๐ท๐‘ก1/2๐‘ข(๐‘ก,๐‘ฅ)โˆ’๐‘ข๐‘ฅ๐‘ฅ๎ƒฉ(๐‘ก,๐‘ฅ)+๐‘ข(๐‘ก,๐‘ฅ)=๐‘“(๐‘ก,๐‘ฅ),๐‘“(๐‘ก,๐‘ฅ)=2+๐‘ก2+8๐‘ก3/23โˆš๐œ‹+(๐œ‹๐‘ก)2๎ƒชcos(๐œ‹๐‘ฅ),0<๐‘ก,๐‘ฅ<1,๐‘ข(0,๐‘ฅ)=0,๐‘ข๐‘ก(๐‘ข0,๐‘ฅ)=0,0โ‰ค๐‘ฅโ‰ค1,๐‘ฅ(๐‘ก,0)=๐‘ข๐‘ฅ(๐‘ก,1)=0,0โ‰ค๐‘กโ‰ค1(2.9) for solving the one-dimensional fractional hyperbolic partial differential equation is considered. Applying difference scheme (2.5), we obtained ๐‘ข๐‘›๐‘˜+1โˆ’2๐‘ข๐‘˜๐‘›+๐‘ข๐‘›๐‘˜โˆ’1๐œ2+1โˆš๐œ‹๐‘˜๎“๐‘š=1ฮ“(๐‘˜โˆ’๐‘š+1/2)๎‚ต๐‘ข(๐‘˜โˆ’๐‘š)!๐‘š๐‘›โˆ’๐‘ข๐‘›๐‘šโˆ’1๐œ1/2๎‚ถโˆ’๎ƒฉ๐‘ข๐‘˜+1๐‘›+1โˆ’2๐‘ข๐‘›๐‘˜+1+๐‘ข๐‘˜+1๐‘›โˆ’1โ„Ž2๎ƒช+๐‘ข๐‘˜๐‘›=๐œ‘๐‘˜๐‘›,๐œ‘๐‘˜๐‘›๎€ท๐‘ก=๐‘“๐‘˜,๐‘ฅ๐‘›๎€ธ๐‘ข,1โ‰ค๐‘˜โ‰ค๐‘โˆ’1,1โ‰ค๐‘›โ‰ค๐‘€โˆ’1,0๐‘›=0,๐œโˆ’1๎€ท๐‘ข1๐‘›โˆ’๐‘ข0๐‘›๎€ธ๐‘ข=0,0โ‰ค๐‘›โ‰ค๐‘€,๐‘˜1โˆ’๐‘ข๐‘˜0=๐‘ข๐‘˜๐‘€โˆ’๐‘ข๐‘˜๐‘€โˆ’1=0,0โ‰ค๐‘˜โ‰ค๐‘.(2.10) We get the system of equations in the matrix form: ๐ด๐‘ˆ๐‘›+1+๐ต๐‘ˆ๐‘›+๐ถ๐‘ˆ๐‘›โˆ’1=๐ท๐œ‘๐‘›๐‘ˆ,1โ‰ค๐‘›โ‰ค๐‘€โˆ’1,1=๐‘ˆ0,๐‘ˆ๐‘€=๐‘ˆ๐‘€โˆ’1,(2.11) where โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ๐ด=0000โ‹ฏ000000โ‹ฏ000000โ‹ฏ0000๐‘Ž0โ‹ฏ00000๐‘Žโ‹ฏ00โ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏ0000โ‹ฏ๐‘Ž00000โ‹ฏ00(๐‘+1)ร—(๐‘+1),โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ๐‘๐ต=1,1๐‘000โ‹ฏ002,1๐‘2,2๐‘00โ‹ฏ003.1๐‘3,2๐‘3,3๐‘0โ‹ฏ004,1๐‘4,2๐‘4,3๐‘4,4๐‘โ‹ฏ00โ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏ๐‘,1๐‘๐‘,2๐‘๐‘,3๐‘๐‘,4โ‹ฏ๐‘๐‘,๐‘0๐‘๐‘+1,1๐‘๐‘+1,2๐‘๐‘+1,3๐‘๐‘+1,4โ‹ฏ๐‘๐‘+1,๐‘๐‘๐‘+1,๐‘+1โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ(๐‘+1)ร—(๐‘+1),โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ๐ถ=๐ด,๐ท=0000โ‹ฏ000000โ‹ฏ000000โ‹ฏ000010โ‹ฏ000001โ‹ฏ00โ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏ0000โ‹ฏ100000โ‹ฏ01(๐‘+1)ร—(๐‘+1),๐‘ˆ๐‘ =โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ๐‘ˆ0๐‘ ๐‘ˆ1๐‘ ๐‘ˆ2๐‘ ๐‘ˆ3๐‘ โ‹ฏ๐‘ˆ๐‘ ๐‘โˆ’1๐‘ˆ๐‘๐‘ โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ(๐‘+1)ร—(1),๐‘ =๐‘›โˆ’1,๐‘›,๐‘›+1.(2.12) Here 1๐‘Ž=โˆ’โ„Ž2,๐‘1,1=1,๐‘2,1=โˆ’1,๐‘2,2=1,๐‘3,1=1๐œ2โˆ’1๐œ1/2,๐‘3,22=โˆ’๐œ2+1๐œ1/2,๐‘3,31=1+๐œ2+2โ„Ž2,๐‘๐‘˜+2,11=โˆ’โˆš๐œ‹ฮ“(๐‘˜โˆ’1+1/2)ฮ“(๐‘˜)๐œ1/2๐‘,2โ‰ค๐‘˜โ‰ค๐‘โˆ’1,๐‘˜+2,๐‘˜+12=โˆ’๐œ2+1๐œ1/2๐‘,1โ‰ค๐‘˜โ‰ค๐‘โˆ’1,๐‘˜+2,๐‘˜=1๐œ2+1โˆš๐œ‹๎‚ตฮ“(1+0.5)โˆ’ฮ“(2)ฮ“(0.5)๎‚ถ1ฮ“(1)๐œ1/2๐‘,2โ‰ค๐‘˜โ‰ค๐‘โˆ’1,๐‘˜+2,๐‘˜+21=1+๐œ2+2โ„Ž2๐‘,1โ‰ค๐‘˜โ‰ค๐‘โˆ’1,๐‘˜+2,๐‘–+1=1โˆš๐œ‹๎‚ตฮ“(๐‘˜โˆ’๐‘–+1/2)โˆ’ฮ“(๐‘˜โˆ’(๐‘–โˆ’1))ฮ“(๐‘˜โˆ’(๐‘–+1)+1/2)๎‚ถ1ฮ“(๐‘˜โˆ’(๐‘–โˆ’1)โˆ’1)๐œ1/2๐œ‘,3โ‰ค๐‘˜โ‰ค๐‘โˆ’1,1โ‰ค๐‘–โ‰ค๐‘˜โˆ’2,๐‘˜๐‘›=๎ƒฉ2+(๐‘˜๐œ)2+8(๐‘˜๐œ)3/23โˆš๐œ‹+(๐œ‹๐‘˜๐œ)2๎ƒช๐œ‘cos๐œ‹(๐‘›โ„Ž),๐‘›=โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ๐œ‘0๐‘›๐œ‘1๐‘›๐œ‘2๐‘›โ‹ฏ๐œ‘๐‘๐‘›โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ(๐‘+1)ร—1.(2.13) So, we have the second-order difference equation with respect to ๐‘› matrix coefficients. To solve this difference equation, we have applied a procedure of modified Gauss elimination method for difference equation with respect to ๐‘˜ matrix coefficients. Hence, we seek a solution of the matrix equation in the following form: ๐‘ˆ๐‘—=๐›ผ๐‘—+1๐‘ˆ๐‘—+1+๐›ฝ๐‘—+1,(2.14)๐‘›=๐‘€โˆ’1,โ€ฆ,2,1,โ€‰โ€‰๐›ผ๐‘—(๐‘—=1,โ€ฆ,๐‘€) are (๐‘+1)ร—(๐‘+1) square matrices, and ๐›ฝ๐‘—(๐‘—=1,โ€ฆ,๐‘€) are (๐‘+1)ร—1 column matrices defined by ๐›ผ๐‘›+1=๎€ท๐ต+๐ถ๐›ผ๐‘›๎€ธโˆ’1๐›ฝ(โˆ’๐ด),๐‘›+1=๎€ท๐ต+๐ถ๐›ผ๐‘›๎€ธโˆ’1๎€ท๐ท๐œ‘๐‘›โˆ’๐ถ๐›ฝ๐‘›๎€ธ,๐‘›=2,3,โ€ฆ,๐‘€,(2.15) where ๐›ผ1=โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ100โ‹ฏ0010โ‹ฏ0001โ‹ฏ0โ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏ000โ‹ฏ1(๐‘+1)ร—(๐‘+1),๐›ฝ1=โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ000โ‹ฏ0โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ(๐‘+1)ร—1.(2.16)

Now, we will give the results of the numerical analysis. First, we give an estimate for the constants ๐ถ1 and ๐ถ2 figuring in the stability estimates of Theorem 2.1. We have ๐ถ1=max๐‘“,๐‘ข๎€ท๐ถ๐‘ก1๎€ธ,๐ถ2=max๐‘“,๐‘ข๎€ท๐ถ๐‘ก2๎€ธ,๐ถ๐‘ก1=๎‚ธmax1โ‰ค๐‘˜โ‰ค๐‘โ€–โ€–๐‘ขโ„Ž๐‘˜โ€–โ€–๐ฟ2โ„Ž+max1โ‰ค๐‘˜โ‰ค๐‘โ€–โ€–๐œโˆ’1๎€ท๐‘ขโ„Ž๐‘˜โˆ’๐‘ขโ„Ž๐‘˜โˆ’1๎€ธโ€–โ€–๐ฟ2โ„Ž๎‚นร—๎‚ตmax1โ‰ค๐‘˜โ‰ค๐‘โˆ’1โ€–โ€–๐‘“โ„Ž๐‘˜โ€–โ€–๐ฟ2โ„Ž๎‚ถโˆ’1,๐ถ๐‘ก2=๎ƒฌmax1โ‰ค๐‘˜โ‰ค๐‘โˆ’1โ€–โ€–๐œโˆ’2๎€ท๐‘ขโ„Ž๐‘˜+1โˆ’2๐‘ขโ„Ž๐‘˜+๐‘ขโ„Ž๐‘˜โˆ’1๎€ธโ€–โ€–๐ฟ2โ„Ž+max๐‘›1โ‰ค๐‘˜โ‰ค๐‘๎“๐‘Ÿ=1โ€–โ€–๎€ท๐‘ขโ„Ž๐‘˜๎€ธ๐‘ฅ๐‘Ÿ,๐‘ฅ๐‘Ÿโ€–โ€–๐ฟ2โ„Ž๎ƒญร—๎‚ตmax2โ‰ค๐‘˜โ‰ค๐‘โˆ’1โ€–โ€–๐œโˆ’1๎€ท๐‘“โ„Ž๐‘˜โˆ’๐‘“โ„Ž๐‘˜โˆ’1๎€ธโ€–โ€–๐ฟ2โ„Ž+โ€–โ€–๐‘“โ„Ž1โ€–โ€–๐ฟ2โ„Ž๎‚ถโˆ’1.(2.17) The constants ๐ถ๐‘ก1 and ๐ถ๐‘ก2 in the case of numerical solution of initial-boundary value problem (2.9) are computed. The constants ๐ถ๐‘ก1 and ๐ถ๐‘ก2 are given in Table 1 for ๐‘=20,40,80, and ๐‘€=80, respectively.

Second, for the accurate comparison of the difference scheme considered, the errors computed by ๐ธ0=max1โ‰ค๐‘˜โ‰ค๐‘โˆ’1๎ƒฉ๐‘€โˆ’1๎“๐‘›=1||๐‘ข(๐‘ก๐‘˜,๐‘ฅ๐‘›)โˆ’๐‘ข๐‘˜๐‘›||2โ„Ž๎ƒช1/2,๐ธ1=max1โ‰ค๐‘˜โ‰ค๐‘โˆ’1๎ƒฉ๐‘€โˆ’1๎“๐‘›=1||||๐‘ข๐‘ก(๐‘ก๐‘˜,๐‘ฅ๐‘›)โˆ’(๐‘ข๐‘›๐‘˜+1โˆ’๐‘ข๐‘›๐‘˜โˆ’1)||||2๐œ2โ„Ž๎ƒช1/2,๐ธ2=max1โ‰ค๐‘˜โ‰ค๐‘โˆ’1๎ƒฉ๐‘€โˆ’1๎“๐‘›=1||||๐‘ข๐‘ก๐‘ก(๐‘ก๐‘˜,๐‘ฅ๐‘›)โˆ’(๐‘ข๐‘›๐‘˜+1โˆ’2๐‘ข๐‘˜๐‘›+๐‘ข๐‘›๐‘˜โˆ’1)๐œ2||||2โ„Ž๎ƒช1/2(2.18) of the numerical solutions are recorded for higher values of ๐‘=๐‘€, where ๐‘ข(๐‘ก๐‘˜,๐‘ฅ๐‘›) represents the exact solution and ๐‘ข๐‘˜๐‘› represents the numerical solution at (๐‘ก๐‘˜,๐‘ฅ๐‘›). The errors ๐ธ0,๐ธ1 and ๐ธ2 results are shown in Table 2 for ๐‘=20,40,60 and ๐‘€=60, respectively.

The figure of the difference scheme solution of (2.9) is given by the Figure 2. The exact solution of (2.9) is given by as follows: ๐‘ข(๐‘ก,๐‘ฅ)=๐‘ก2cos(๐œ‹๐‘ฅ).(2.19) The figure of the exact solution of (2.9) is shown by the Figure 1.

3. He's Variational Iteration Method

In the present paper, the mixed boundary value problem for the multidimensional fractional hyperbolic equation (1.1) is considered. The correction functional for (1.1) can be approximately expressed as follows: ๐‘ข๐‘›+1(๐‘ก,๐‘ฅ)=๐‘ข๐‘›+๎€œ(๐‘ก,๐‘ฅ)๐‘ก0๐œ†๎ƒฌ๐œ•2๐‘ข(๐‘ ,๐‘ฅ)๐œ•๐‘ 2โˆ’๐‘š๎“๐‘Ÿ=1๎€ท๐‘Ž๐‘Ÿ(๐‘ฅ)ฬƒ๐‘ข๐‘ฅ๐‘Ÿ๎€ธ๐‘ฅ๐‘Ÿ+D๐‘ 1/2๎ƒญฬƒ๐‘ข(๐‘ ,๐‘ฅ)+๐œŽฬƒ๐‘ข(๐‘ ,๐‘ฅ)โˆ’๐‘“(๐‘ ,๐‘ฅ)๐‘‘๐‘ ,(3.1) where ๐œ† is a general Lagrangian multiplier (see, e.g., [31]) and ฬƒ๐‘ข is considered as a restricted variation as a restricted variation (see, e.g., [32]); that is, ๐›ฟฬƒ๐‘ข=0, ๐‘ข0(๐‘ก,๐‘ฅ) is its initial approximation. Using the above correction functional stationary and noticing that ๐›ฟฬƒ๐‘ข=0, we obtain ๐›ฟ๐‘ข๐‘›+1(๐‘ก,๐‘ฅ)=๐›ฟ๐‘ข๐‘›๎€œ(๐‘ก,๐‘ฅ)+๐‘ก0๎‚ธ๐›ฟ๐œ†๐œ•๐‘ข2๐‘›(๐‘ก,๐‘ฅ)๐œ•๐‘ 2๎‚น๐‘‘๐‘ ,๐›ฟ๐‘ข๐‘›+1(๐‘ก,๐‘ฅ)=๐›ฟ๐‘ข๐‘›(๐‘ก,๐‘ฅ)โˆ’๐œ•๐œ†๐œ•๐‘ ๐›ฟ๐‘ข๐‘›|||(๐‘ ,๐‘ฅ)๐‘ =๐‘ก๐œ•+๐œ†๎€ท๐œ•๐‘ ๐›ฟ๐‘ข๐‘›๎€ธ|||(๐‘ ,๐‘ฅ)๐‘ =๐‘ก+๎€œ๐‘ก0๐œ•2๐œ†(๐‘ก,๐‘ )๐œ•๐‘ 2๐›ฟ๐‘ข๐‘›(๐‘ ,๐‘ฅ)๐‘‘๐‘ =0.(3.2) From the above relation for any ๐›ฟ๐‘ข๐‘›, we get the Euler-Lagrange equation: ๐œ•๐œ†2(๐‘ก,๐‘ )๐œ•๐‘ 2=0,(3.3) with the following natural boundary conditions: 1โˆ’๐œ•๐œ†(๐‘ก,๐‘ )|||๐œ•๐‘ ๐‘ =๐‘ก||=0,๐œ†(๐‘ก,๐‘ )๐‘ =๐‘ก=0.(3.4) Therefore, the Lagrange multiplier can be identified as follows: ๐œ†(๐‘ก,๐‘ )=๐‘ โˆ’๐‘ก.(3.5) Substituting the identified Lagrange multiplier into (3.1), the following variational iteration formula can be obtained: ๐‘ข๐‘›+1(๐‘ก,๐‘ฅ)=๐‘ข๐‘›๎€œ(๐‘ก,๐‘ฅ)+๐‘ก0๎ƒฌ๐œ•(๐‘ โˆ’๐‘ก)2๐‘ข๐‘›(๐‘ ,๐‘ฅ)๐œ•๐‘ 2โˆ’๐‘š๎“๐‘Ÿ=1๎‚€๐‘Ž๐‘Ÿ(๐‘ฅ)๐‘ข๐‘›๐‘ฅ๐‘Ÿ๎‚๐‘ฅ๐‘Ÿ+๐ท๐‘ 1/2๐‘ข๐‘›(๐‘ ,๐‘ฅ)+๐‘ข๐‘›๎ƒญ(๐‘ ,๐‘ฅ)โˆ’๐‘“(๐‘ ,๐‘ฅ)๐‘‘๐‘ .(3.6)

In this case, let an initial approximation ๐‘ข0(๐‘ก,๐‘ฅ)=๐‘ข(0,๐‘ฅ)+๐‘ก๐‘ข๐‘ก(0,๐‘ฅ). Then approximate solution takes the form ๐‘ข(๐‘ก,๐‘ฅ)=lim๐‘›โ†’โˆžu๐‘›(๐‘ก,๐‘ฅ).

3.1. Variational Iteration Solution 1

For the numerical result, the mixed problem ๐ท2๐‘ก๐‘ข(๐‘ก,๐‘ฅ)+๐ท๐‘ก1/2๐‘ข(๐‘ก,๐‘ฅ)โˆ’๐‘ข๐‘ฅ๐‘ฅ๎ƒฉ(๐‘ก,๐‘ฅ)+๐‘ข(๐‘ก,๐‘ฅ)=๐‘“(๐‘ก,๐‘ฅ),๐‘“(๐‘ก,๐‘ฅ)=2+๐‘ก2+8๐‘ก3/23โˆš๐œ‹+(๐œ‹๐‘ก)2๎ƒชcos(๐œ‹๐‘ฅ),0<๐‘ก,๐‘ฅ<1,๐‘ข(0,๐‘ฅ)=0,๐‘ข๐‘ก(๐‘ข0,๐‘ฅ)=0,0โ‰ค๐‘ฅโ‰ค1,๐‘ฅ(๐‘ก,0)=๐‘ข๐‘ฅ(๐‘ก,1)=0,0โ‰ค๐‘กโ‰ค1(3.7) for solving the one-dimensional fractional hyperbolic partial differential equation is considered.

According to formula (3.6), the iteration formula for (3.7) is given by ๐‘ข๐‘›+1(๐‘ก,๐‘ฅ)=๐‘ข๐‘›+๎€œ(๐‘ก,๐‘ฅ)๐‘ก0๎‚ธ(๐‘ โˆ’๐‘ก)๐œ•๐‘ข2๐‘›(๐‘ ,๐‘ฅ)๐œ•๐‘ 2+๐ท๐‘ 1/2๐‘ข๐‘›(๐‘ ,๐‘ฅ)โˆ’๐œ•๐‘ข2๐‘›(๐‘ ,๐‘ฅ)๐œ•๐‘ฅ2+๐‘ข๐‘›๎‚น(๐‘ ,๐‘ฅ)โˆ’๐‘“(๐‘ ,๐‘ฅ)๐‘‘๐‘ .(3.8) Now we start with an initial approximation ๐‘ข0(๐‘ก,๐‘ฅ)=๐‘ข(0,๐‘ฅ)+๐‘ก๐‘ข๐‘ก(0,๐‘ฅ).(3.9) Using the above iteration formula (3.8), we can obtain the other components as ๐‘ข0๐‘ข(๐‘ก,๐‘ฅ)=0,11(๐‘ก,๐‘ฅ)=โˆš420๐œ‹๎‚€128๐‘ก7/2+35๐‘ก4โˆš๐œ‹+35๐‘ก4๐œ‹5/2+420๐‘ก2โˆš๐œ‹๎‚๐‘ขcos(๐œ‹๐‘ฅ),21(๐‘ก,๐‘ฅ)=โˆš420๐œ‹๎‚€cos(๐œ‹๐‘ฅ)128๐‘ก7/2+35๐‘ก4โˆš๐œ‹+35๐‘ก4๐œ‹5/2+420๐‘ก2โˆš๐œ‹๎‚[+cos(๐œ‹๐‘ฅ)โˆ’0.9058003666๐‘ก4โˆ’0.1510268880๐‘ก11/2โˆ’0.1719434921๐‘ก7/2โˆ’0.3281897218๐‘ก6โˆ’0.01666666667๐‘ก5]โ‹ฎ(3.10) The figure of (3.10) is given by the Figure 3.

3.2. Variational Iteration Solution 2

For the numerical result, the mixed problem ๐ท2๐‘ก๐‘ข(๐‘ก,๐‘ฅ,๐‘ฆ)+๐ท๐‘ก1/2๐‘ข(๐‘ก,๐‘ฅ,๐‘ฆ)โˆ’๐‘ข๐‘ฅ๐‘ฅ(๐‘ก,๐‘ฅ,๐‘ฆ)โˆ’๐‘ข๐‘ฆ๐‘ฆ๎ƒฉ(๐‘ก,๐‘ฅ,๐‘ฆ)+๐‘ข(๐‘ก,๐‘ฅ,๐‘ฆ)=๐‘“(๐‘ก,๐‘ฅ,๐‘ฆ),๐‘“(๐‘ก,๐‘ฅ,๐‘ฆ)=2+๐‘ก2+8๐‘ก3/23โˆš๐œ‹+(๐œ‹๐‘ก)2๎ƒชcos(๐œ‹๐‘ฅ)cos(๐œ‹๐‘ฆ),0<๐‘ก,๐‘ฅ<1,๐‘ฆ<1,๐‘ข(0,๐‘ฅ,๐‘ฆ)=0,๐‘ข๐‘ก๐‘ข(0,๐‘ฅ,๐‘ฆ)=0,0โ‰ค๐‘ฅโ‰ค1,0โ‰ค๐‘ฆโ‰ค1,๐‘ฅ(๐‘ก,0,๐‘ฆ)=๐‘ข๐‘ฅ(๐‘ข๐‘ก,1,๐‘ฆ)=0,0โ‰ค๐‘กโ‰ค1,0โ‰ค๐‘ฆโ‰ค1,๐‘ฆ(๐‘ก,๐‘ฅ,0)=๐‘ข๐‘ฆ(๐‘ก,๐‘ฅ,1)=0,0โ‰ค๐‘กโ‰ค1,0โ‰ค๐‘ฅโ‰ค1(3.11) for solving the two-dimensional fractional hyperbolic partial differential equation is considered.

According to formula (3.6), the iteration formula for (3.11) is given by ๐‘ข๐‘›+1(๐‘ก,๐‘ฅ,๐‘ฆ)=๐‘ข๐‘›+๎€œ(๐‘ก,๐‘ฅ,๐‘ฆ)๐‘ก0๎‚ธ๐œ•(๐‘ โˆ’๐‘ก)2๐‘ข๐‘›(๐‘ ,๐‘ฅ,๐‘ฆ)๐œ•๐‘ 2+๐ท๐‘ 1/2๐‘ข๐‘›(๐‘ ,๐‘ฅ,๐‘ฆ)โˆ’๐œ•๐‘ข2๐‘›(๐‘ ,๐‘ฅ,๐‘ฆ)๐œ•๐‘ฅ2โˆ’๐œ•๐‘ข2๐‘›(๐‘ ,๐‘ฅ,๐‘ฆ)๐œ•๐‘ฆ2+๐‘ข๐‘›๎‚น(๐‘ ,๐‘ฅ,๐‘ฆ)โˆ’๐‘“(๐‘ ,๐‘ฅ,๐‘ฆ)๐‘‘๐‘ ;(3.12) we start with an initial approximation ๐‘ข0(๐‘ก,๐‘ฅ,๐‘ฆ)=๐‘ข(0,๐‘ฅ,๐‘ฆ)+๐‘ก๐‘ข๐‘ก(0,๐‘ฅ,๐‘ฆ).(3.13) Using the above iteration formula (3.12), we can obtain the other components as ๐‘ข0๐‘ข(๐‘ก,๐‘ฅ,๐‘ฆ)=0,11(๐‘ก,๐‘ฅ,๐‘ฆ)=โˆš420๐œ‹๎‚€128๐‘ก7/2+35๐‘ก4โˆš๐œ‹+35๐‘ก4๐œ‹5/2+420๐‘ก2โˆš๐œ‹๎‚๐‘ขcos(๐œ‹๐‘ฅ)cos(๐œ‹๐‘ฆ),2๎‚ธ(๐‘ก,๐‘ฅ,๐‘ฆ)=cos(๐œ‹๐‘ฅ)cos(๐œ‹๐‘ฆ)32๎‚€1105๐‘ก๎‚5/2๐‘ก7/2+๎‚€1112๎‚๎‚€๐‘ก๎‚5/2๐‘ก4โˆš๐œ‹+1๎‚€112๐‘ก๎‚5/2๐‘ก4๐œ‹5/2+๎‚€1๐‘ก๎‚5/2๐‘ก2โˆš๐œ‹๎‚นร—๎‚ธ+cos(๐œ‹๐‘ฅ)cos(๐œ‹๐‘ฆ)โˆ’0.2195931203๐‘ก11/2โˆš๐œ‹๎‚€1๐‘ก๎‚5/2โˆšโˆ’0.1719434921๐œ‹๐‘ก7/2ร—๎‚€1๐‘ก๎‚5/2โˆ’0.6261860981๐‘ก6โˆš๐œ‹๎‚€1๐‘ก๎‚5/2โˆšโˆ’1.728267400๐œ‹๐‘ก4๎‚€1๐‘ก๎‚5/2โˆšโˆ’0.01666666667๐œ‹๐‘ก5/2๎‚นโ‹ฎ(3.14) The exact solution of (3.11) is given by as follows: ๐‘ข(๐‘ก,๐‘ฅ,๐‘ฆ)=๐‘ก2cos(๐œ‹๐‘ฅ)cos(๐œ‹๐‘ฆ).(3.15) The figure of the exact solution of (3.11) is shown by the Figure 5.

The figure of (3.14) is given by the Figure 4, and so on; in the same manner the rest of the components of the iteration formula (3.12) can be obtained using the Maple package.