Abstract

Using generalized variational principle and Riccati technique, new oscillation criteria are established for forced second-order differential equation with mixed nonlinearities, which improve and generalize some recent papers in the literature.

1. Introduction

In this paper, we consider the second-order forced differential equation with mixed nonlinearities: ξ‚€||π‘¦π‘Ÿ(𝑑)ξ…ž||(𝑑)π›Όβˆ’1π‘¦ξ…žξ‚(𝑑)ξ…ž||||+𝑝(𝑑)𝑦(𝑑)π›Όβˆ’1𝑦(𝑑)+π‘šξ“π‘—=1π‘žπ‘—||||(𝑑)𝑦(𝑑)π›½π‘—βˆ’1𝑦(𝑑)=𝑒(𝑑),𝑑β‰₯𝑑0,(1.1) where π‘Ÿ,𝑝,π‘žπ‘—(1β‰€π‘—β‰€π‘š),π‘’βˆˆπΆ([𝑑0,∞),ℝ) with π‘Ÿ(𝑑)>0 and 0<𝛼<𝛽1<𝛽2<β‹―<π›½π‘š are real numbers, 𝑝,π‘žπ‘— (1β‰€π‘—β‰€π‘š), and 𝑒 might change signs.

In this paper, we are concerned with the nonhomogeneous equation (1.1). By a solution of (1.1), we mean that a function π‘¦βˆˆπΆ1[𝑇𝑦,∞)(𝑇𝑦β‰₯𝑑0, where 𝑇𝑦β‰₯𝑑0 depends on the particular solution) which has the property 𝑝(𝑑)|π‘¦ξ…ž(𝑑)|π›Όβˆ’1π‘¦ξ…ž(𝑑)∈𝐢1[𝑇𝑦,∞) and satisfies (1.1). A nontrivial solution of (1.1) is called oscillatory if it has arbitrarily large zeros; otherwise, it is said to be nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

When π‘š=0, we have the following second-order half-linear differential equation without or with forcing term: ξ‚€||π‘¦π‘Ÿ(𝑑)ξ…ž||(𝑑)π›Όβˆ’1π‘¦ξ…žξ‚(𝑑)ξ…ž||||+π‘ž(𝑑)𝑦(𝑑)π›Όβˆ’1𝑦(𝑑)=0,𝑑β‰₯𝑑0,ξ‚€||𝑦(1.2)π‘Ÿ(𝑑)ξ…ž(||𝑑)π›Όβˆ’1π‘¦ξ…ž(𝑑)ξ…ž||||+π‘ž(𝑑)𝑦(𝑑)π›Όβˆ’1𝑦(𝑑)=𝑒(𝑑),𝑑β‰₯𝑑0.(1.3) There are a lot of papers involved oscillation (see [1–6]) for these equations since the foundation work of Elbert [2]. In paper [1], using Leighton’s variational principle (see [3]) for (1.3), the following result was obtained by Li and Cheng.

Theorem 1.1. Suppose that for any 𝑇β‰₯𝑑0, there exist 𝑇≀𝑠1<𝑑1≀𝑠2<𝑑2 such that 𝑒(𝑑)≀0 for π‘‘βˆˆ[𝑠1,𝑑1] and 𝑒(𝑑)β‰₯0 for π‘‘βˆˆ[𝑠2,𝑑2]. Let 𝐷(𝑠𝑖,𝑑𝑖)={π‘’βˆˆπΆ1[𝑠𝑖,𝑑𝑖]βˆΆπ‘’(𝑑)β‰’0,𝑒(𝑠𝑖)=𝑒(𝑑𝑖)=0} for 𝑖=1,2. If there exist 𝐻∈𝐷(𝑠𝑖,𝑑𝑖) and a positive, nondecreasing function 𝜌∈𝐢1([𝑑0,∞),ℝ) such that ξ€œπ‘‘π‘–π‘ π‘–π»2ξ‚€1(𝑑)𝜌(𝑑)π‘ž(𝑑)𝑑𝑑>𝛼+1𝛼+1ξ€œπ‘‘π‘–π‘ π‘–π‘Ÿ(𝑑)𝜌(𝑑)||𝐻||(𝑑)π›Όβˆ’1ξ‚΅2||π»ξ…ž||+||||(𝑑)𝐻(𝑑)πœŒβ€²πœŒξ‚Άπ›Ό+1𝑑𝑑(1.4) for 𝑖=1,2. Then, (1.3) is oscillatory.

Unfortunately, Theorem 1.1 cannot be applied to the case where 𝛼>1, since for 𝜌(𝑑)≑1, the term |𝐻(𝑑)|π›Όβˆ’1 will appear as a denominator in (1.4) so that the requirement 𝐻(𝑠𝑖)=𝐻(𝑑𝑖)=0 will cause trouble. This certainly calls for investigation of oscillation criteria that can handle with such cases.

When 𝛼=1, (1.2) and (1.3) are reduced to the linear differential equation: ξ€·π‘Ÿ(𝑑)π‘¦ξ…žξ€Έ(𝑑)ξ…ž+π‘ž(𝑑)𝑦(𝑑)=0,𝑑β‰₯𝑑0,ξ€·π‘Ÿ(1.5)(𝑑)π‘¦ξ…žξ€Έ(𝑑)ξ…ž+π‘ž(𝑑)𝑦(𝑑)=𝑒(𝑑),𝑑β‰₯𝑑0.(1.6) In paper [7], Wong proved the following result for (1.6).

Theorem 1.2. Suppose that for any 𝑇β‰₯𝑑0, there exist 𝑇≀𝑠1<𝑑1≀𝑠2<𝑑2 such that 𝑒(𝑑)≀0 for π‘‘βˆˆ[𝑠1,𝑑1] and 𝑒(𝑑)β‰₯0 for π‘‘βˆˆ[𝑠2,𝑑2]. Let 𝐷(𝑠𝑖,𝑑𝑖)={π‘’βˆˆπΆ1[𝑠𝑖,𝑑𝑖]βˆΆπ‘’(𝑑)β‰ 0,𝑒(𝑠𝑖)=𝑒(𝑑𝑖)=0} for 𝑖=1,2. If there exists π‘’βˆˆπ·(𝑠𝑖,𝑑𝑖) such that 𝑄𝑖(ξ€œπ‘’)∢=π‘‘π‘–π‘ π‘–ξ‚ƒπ‘ž(𝑑)𝑒2(𝑒𝑑)βˆ’π‘Ÿ(𝑑)ξ…ž(𝑑)2𝑑𝑑>0,𝑖=1,2,(1.7) then (1.6) is oscillatory.

On the other hand, among the oscillation criteria, Komkov [8] gave a generalized Leighton’s variational principle, which also can be applied to oscillation for (1.5).

Theorem 1.3. Suppose that there exist a 𝐢1 function 𝑒(𝑑) defined on [𝑠1,𝑑1] and a function 𝐺(𝑒) such that 𝐺(𝑒(𝑑)) is not constant on [𝑠1,𝑑1], 𝐺(𝑒(𝑠1))=𝐺(𝑒(𝑑1))=0, 𝑔(𝑒)=πΊξ…ž(𝑒) is continuous, ξ€œπ‘‘1𝑠1ξ‚ƒξ€·π‘’π‘ž(𝑑)𝐺(𝑒(𝑑))βˆ’π‘Ÿ(𝑑)ξ…ž(𝑑)2𝑑𝑑>0,(1.8) and (𝑔(𝑒(𝑑)))2≀4𝐺(𝑒(𝑑)) for π‘‘βˆˆ[𝑠1,𝑑1]. Then, every solution of (1.5) must vanish on [𝑠1,𝑑1].

We note that when 𝐺(𝑒)≑𝑒2, the left-hand side of (1.8) is the energy functional related to (1.5).

When 𝑝(𝑑)≑0, π‘š=1, (1.1) turns into the quasilinear differential equation: ξ‚€||π‘¦π‘Ÿ(𝑑)ξ…ž||(𝑑)π›Όβˆ’1π‘¦ξ…žξ‚(𝑑)ξ…ž||||+π‘ž(𝑑)𝑦(𝑑)π›½βˆ’1𝑦(𝑑)=𝑒(𝑑),𝑑β‰₯𝑑0,(1.9) where 𝑝,π‘ž,π‘’βˆˆπΆ([𝑑0,∞),ℝ) with 𝑝(𝑑)>0 and 0<𝛼≀𝛽 being constants. In paper [9], using the generalized variational principle, Shao proved the following result for (1.9).

Theorem 1.4. Assume that for any 𝑇β‰₯𝑑0, there exist 𝑇≀𝑠1<𝑑1≀𝑠2<𝑑2 such that 𝑠𝑒(𝑑)≀0,π‘‘βˆˆ1,𝑑1ξ€»,𝑠β‰₯0,π‘‘βˆˆ2,𝑑2ξ€».(1.10) Let π‘’βˆˆπΆ1[𝑠𝑖,𝑑𝑖] and nonnegative functions 𝐺1,𝐺2 satisfying 𝐺𝑖(𝑒(𝑠𝑖))=𝐺𝑖(𝑒(𝑑𝑖))=0, 𝑔𝑖(𝑒)=πΊξ…žπ‘–(𝑒) are continuous and (𝑔𝑖(𝑒(𝑑)))𝛼+1≀(𝛼+1)𝛼+1𝐺𝛼𝑖(𝑒(𝑑)) for π‘‘βˆˆ[𝑠𝑖,𝑑𝑖], 𝑖=1,2. If there exists a positive function πœ™βˆˆπΆ1([𝑑0,∞),ℝ) such that π‘„πœ™π‘–ξ€œ(𝑒)∢=π‘‘π‘–π‘ π‘–βŽ‘βŽ’βŽ’βŽ£π‘„πœ™(𝑑)𝑒(𝑑)𝐺𝑖||𝑒(𝑒(𝑑))βˆ’π‘Ÿ(𝑑)ξ…ž||+𝐺(𝑑)𝑖1/(𝛼+1)||πœ™(𝑒(𝑑))ξ…ž||(𝑑)ξƒͺ(𝛼+1)πœ™(𝑑)𝛼+1⎀βŽ₯βŽ₯βŽ¦π‘‘π‘‘>0(1.11) for 𝑖=1,2. Then (1.9) is oscillatory, where 𝑄𝑒(𝑑)=π›Όβˆ’π›Ό/𝛽𝛽(π›½βˆ’π›Ό)(π›Όβˆ’π›½)/𝛽[]π‘ž(𝑑)𝛼/𝛽||||𝑒(𝑑)(π›½βˆ’π›Ό)/𝛽,(1.12) with the convention that 00=1.

Recently, using Riccati transformation, the following oscillation criteria were given for (1.1) by Zheng et al. [10].

Theorem 1.5. Assume that for any 𝑇β‰₯𝑑0, there exist 𝑇≀𝑠1<𝑑1≀𝑠2<𝑑2 such that π‘žπ‘—(𝑑)β‰₯0(1β‰€π‘—β‰€π‘š) for π‘‘βˆˆ[𝑠1,𝑑1]βˆͺ[𝑠2,𝑑2] and 𝑠𝑒(𝑑)≀0,π‘‘βˆˆ1,𝑑1ξ€»,𝑠β‰₯0,π‘‘βˆˆ2,𝑑2ξ€».(1.13) Let 𝐷(𝑠𝑖,𝑑𝑖)={π‘’βˆˆπΆ1[𝑠𝑖,𝑑𝑖]βˆΆπ‘’π›Ό+1(𝑑)>0,π‘‘βˆˆ(𝑠𝑖,𝑑𝑖),𝑒(𝑠𝑖)=𝑒(𝑑𝑖)=0} for 𝑖=1,2. If there exist 𝐻∈𝐷(𝑠𝑖,𝑑𝑖) and a positive function πœ™βˆˆπΆ1([𝑑0,∞),ℝ) such that ξ€œπ‘‘π‘–π‘ π‘–πœ™(𝑑)𝑝(𝑑)+π‘šξ“π‘—=1𝑄𝑗ξƒͺ𝐻(𝑑)𝛼+1ξ‚΅||𝐻(𝑑)βˆ’π‘Ÿ(𝑑)ξ…ž||+||(𝑑)𝐻(𝑑)πœ™ξ…ž||(𝑑)ξ‚Ά(𝛼+1)πœ™(𝑑)𝛼+1𝑑𝑑>0(1.14) for 𝑖=1,2. Then (1.1) is oscillatory, where 𝑄𝑗(𝑑)=π›Όβˆ’π›Ό/π›½π‘—π›½π‘—ξ€Ίπ‘šξ€·π›½π‘—βˆ’π›Όξ€Έξ€»(π›Όβˆ’π›½π‘—)/π›½π‘—ξ€Ίπ‘žπ‘—ξ€»(𝑑)𝛼/𝛽𝑗||||𝑒(𝑑)(π›½π‘—βˆ’π›Ό)/𝛽𝑗,1β‰€π‘—β‰€π‘š,(1.15) with the convention that 00=1.

The purpose of this paper is to obtain new oscillation criteria for (1.1) based on generalized variational principles. Roughly, if the existence of a β€œpositive” solution of a functional relation implies the β€œpositivity” of an associated functional over a set of β€œadmissible” functions, then we say that a variational oscillation principle is valid. For instance, in Theorem 1.1, 𝐻∈𝐷(𝑠𝑖,𝑑𝑖) is admissible, and the functional is ξ€œπ‘‘π‘–π‘ π‘–ξƒ―ξ‚€1𝛼+1𝛼+1𝑝(𝑑)𝜌(𝑑)||𝐻||(𝑑)π›Όβˆ’1ξ‚΅2||π»ξ…ž||+||||𝜌(𝑑)𝐻(𝑑)ξ…ž(𝑑)ξ‚ΆπœŒ(𝑑)𝛼+1βˆ’π»2ξƒ°(𝑑)𝜌(𝑑)π‘ž(𝑑)𝑑𝑑.(1.16) Our emphasis will be directed towards oscillation criteria that are closely related to the generalized energy functional (the generalization of (𝛼+1)-degree energy functional) for half-linear equations (see [4, 11–13] for more details on these functionals), which improve the results mentioned above. Examples will also be given to illustrate the effectiveness of our main results.

2. Main Results

Firstly, we give an inequality, which is a transformation of Young’s inequality.

Lemma 2.1 (see [14]). Suppose that 𝑋 and π‘Œ are nonnegative, then π›Ύπ‘‹π‘Œπ›Ύβˆ’1βˆ’π‘‹π›Ύβ‰€(π›Ύβˆ’1)π‘Œπ›Ύ,𝛾>1,(2.1) where equality holds if and only if 𝑋=π‘Œ.

Now, we will give our main results.

Theorem 2.2. Assume that for any 𝑇β‰₯𝑑0, there exist 𝑇≀𝑠1<𝑑1≀𝑠2<𝑑2 such that 𝑠𝑒(𝑑)≀0,π‘‘βˆˆ1,𝑑1ξ€»,𝑠β‰₯0,π‘‘βˆˆ2,𝑑2ξ€».(2.2) Let π‘’βˆˆπΆ1[𝑠𝑖,𝑑𝑖] and nonnegative functions 𝐺1,𝐺2 satisfying 𝐺𝑖(𝑒(𝑠𝑖))=𝐺𝑖(𝑒(𝑑𝑖))=0, 𝑔𝑖(𝑒)=πΊξ…žπ‘–(𝑒) are continuous and (𝑔𝑖(𝑒(𝑑)))𝛼+1≀(𝛼+1)𝛼+1𝐺𝛼𝑖(𝑒(𝑑)) for π‘‘βˆˆ[𝑠𝑖,𝑑𝑖],𝑖=1,2. If there exists a positive function πœ™βˆˆπΆ1([𝑑0,∞),ℝ) such that π‘„πœ™π‘–ξ€œ(𝑒)∢=π‘‘π‘–π‘ π‘–ξƒ¬πΊπœ™(𝑑)𝑖(𝑒(𝑑))𝑝(𝑑)+π‘šξ“π‘—=1𝑄𝑗ξƒͺ||𝑒(𝑑)(2.3)βˆ’π‘Ÿ(𝑑)ξ…ž||+𝐺(𝑑)𝑖1/(𝛼+1)(||πœ™π‘’(𝑑))ξ…ž(||𝑑)ξƒͺ(𝛼+1)πœ™(𝑑)𝛼+1⎀βŽ₯βŽ₯βŽ¦π‘‘π‘‘>0(2.4) for 𝑖=1,2, where 𝑄𝑗(𝑑) is defined as (1.15) with the convention that 00=1. Then, (1.1) is oscillatory.

Proof. Suppose to the contrary that there is a nontrivial nonoscillatory solution 𝑦=𝑦(𝑑). We assume that 𝑦(𝑑)β‰ 0 on [𝑇0,∞) for some 𝑇0β‰₯𝑑0. Set ||𝑦𝑀(𝑑)=πœ™(𝑑)π‘Ÿ(𝑑)ξ…ž||(𝑑)π›Όβˆ’1π‘¦ξ…ž(𝑑)||||𝑦(𝑑)π›Όβˆ’1𝑦(𝑑),𝑑β‰₯𝑇0.(2.5) Then differentiating (2.5) and making use of (1.1), it follows that for all 𝑑β‰₯𝑇0, π‘€ξ…žπœ™(𝑑)=ξ…ž(𝑑)πœ™(𝑑)𝑀(𝑑)βˆ’πœ™(𝑑)𝑝(𝑑)+πœ™(𝑑)𝑒(𝑑)||||𝑦(𝑑)π›Όβˆ’1||||𝑦(𝑑)βˆ’π›Όπ‘€(𝑑)(𝛼+1)/𝛼(π‘Ÿ(𝑑)πœ™(𝑑))1/π›Όβˆ’πœ™(𝑑)π‘šξ“π‘—=1π‘žπ‘—||𝑦||(𝑑)π›½π‘—βˆ’π›Ό.(2.6) By the assumptions, we can choose 𝑠𝑖,𝑑𝑖β‰₯𝑇0 for 𝑖=1,2 so that 𝑒(𝑑)≀0 on the interval 𝐼1=[𝑠1,𝑑1], with 𝑠1<𝑑1 and 𝑦(𝑑)β‰₯0, or 𝑒(𝑑)β‰₯0 on the interval 𝐼2=[𝑠2,𝑑2], with 𝑠2<𝑑2 and 𝑦(𝑑)≀0. For given π‘‘βˆˆπΌ1 or π‘‘βˆˆπΌ2, set 𝐹𝑗(π‘₯)=π‘žπ‘—(𝑑)π‘₯π›½π‘—βˆ’π›Όβˆ’π‘’(𝑑)/π‘šπ‘₯𝛼, 1β‰€π‘—β‰€π‘š, we have πΉξ…žπ‘—(π‘₯βˆ—π‘—)=0, πΉπ‘—ξ…žξ…ž(π‘₯βˆ—π‘—)>0, where π‘₯βˆ—π‘—=[βˆ’π›Όπ‘’(𝑑)/π‘š(π›½π‘—βˆ’π›Ό)π‘žπ‘—(𝑑)]1/𝛽𝑗. So, 𝐹𝑗(π‘₯) obtains it minimum on π‘₯βˆ—π‘— and 𝐹𝑗(π‘₯)β‰₯𝐹𝑗π‘₯βˆ—π‘—ξ€Έ=𝑄𝑗(𝑑).(2.7) So on the interval 𝐼1 or 𝐼2, (2.6) and (2.2) imply that 𝑀(𝑑) satisfies ξƒ©πœ™(𝑑)𝑝(𝑑)+π‘šξ“π‘—=1𝑄𝑗ξƒͺ(𝑑)β‰€βˆ’π‘€ξ…žπœ™(𝑑)+ξ…ž(𝑑)||||πœ™(𝑑)𝑀(𝑑)βˆ’π›Όπ‘€(𝑑)(𝛼+1)/𝛼(π‘Ÿ(𝑑)πœ™(𝑑))1/𝛼.(2.8) Multiplying 𝐺𝑖(𝑒(𝑑)) through (2.8) and integrating (2.8) from 𝑠𝑖 to 𝑑𝑖, using the fact that 𝐺𝑖(𝑒(𝑠1))=𝐺𝑖(𝑒(𝑑1))=0, we obtain ξ€œπ‘‘π‘–π‘ π‘–ξƒ©πœ™(𝑑)𝑝(𝑑)+π‘šξ“π‘—=1𝑄𝑗ξƒͺ𝐺(𝑑)π‘–β‰€ξ€œ(𝑒(𝑑))𝑑𝑑𝑑𝑖𝑠𝑖𝐺𝑖(𝑒(𝑑))βˆ’π‘€ξ…žπœ™(𝑑)+ξ…ž(𝑑)𝑀||||πœ™(𝑑)(𝑑)βˆ’π›Όπ‘€(𝑑)(𝛼+1)/𝛼(π‘Ÿ(𝑑)πœ™(𝑑))1/𝛼𝑑𝑑=βˆ’πΊπ‘–(||𝑒(𝑑))𝑀(𝑑)𝑑𝑖𝑠𝑖+ξ€œπ‘‘π‘–π‘ π‘–π‘”π‘–(𝑒(𝑑))π‘’ξ…ž(+ξ€œπ‘‘)𝑀(𝑑)π‘‘π‘‘π‘‘π‘–π‘ π‘–πΊπ‘–ξƒ―πœ™(𝑒(𝑑))ξ…ž(𝑑)||||πœ™(𝑑)𝑀(𝑑)βˆ’π›Όπ‘€(𝑑)(𝛼+1)/𝛼(π‘Ÿ(𝑑)πœ™(𝑑))1/𝛼=ξ€œπ‘‘π‘‘π‘‘π‘–π‘ π‘–ξ‚Έπ‘”π‘–(𝑒(𝑑))π‘’ξ…ž(𝑑)+πΊπ‘–πœ™(𝑒(𝑑))ξ…ž(𝑑)ξ‚Ήξ€œπœ™(𝑑)𝑀(𝑑)π‘‘π‘‘βˆ’π›Όπ‘‘π‘–π‘ π‘–πΊπ‘–||𝑀||(𝑒(𝑑))(𝑑)(𝛼+1)/𝛼(π‘Ÿ(𝑑)πœ™(𝑑))1/π›Όβ‰€ξ€œπ‘‘π‘‘π‘‘π‘–π‘ π‘–ξ‚Έ||𝑔𝑖(||||𝑒𝑒(𝑑))ξ…ž(||𝑑)+𝐺𝑖(||πœ™π‘’(𝑑))ξ…ž||(𝑑)ξ‚Ή||||ξ€œπœ™(𝑑)𝑀(𝑑)π‘‘π‘‘βˆ’π›Όπ‘‘π‘–π‘ π‘–πΊπ‘–||𝑀||(𝑒(𝑑))(𝑑)(𝛼+1)/𝛼(π‘Ÿ(𝑑)πœ™(𝑑))1/π›Όξ€œπ‘‘π‘‘β‰€(𝛼+1)𝑑𝑖𝑠𝑖𝐺𝑖𝛼/(𝛼+1)||𝑒(𝑒(𝑑))ξ…ž||(𝑑)+𝐺𝑖||πœ™(𝑒(𝑑))ξ…ž||(𝑑)ξ‚Ή||||ξ€œ(𝛼+1)πœ™(𝑑)𝑀(𝑑)π‘‘π‘‘βˆ’π›Όπ‘‘π‘–π‘ π‘–πΊπ‘–||||(𝑒(𝑑))𝑀(𝑑)(𝛼+1)/𝛼(π‘Ÿ(𝑑)πœ™(𝑑))1/𝛼𝑑𝑑.(2.9) Let 𝛼𝑋=(π‘Ÿ(𝑑)πœ™(𝑑))1/𝛼𝛼/(𝛼+1)𝐺𝑖𝛼/(𝛼+1)||||1𝑀(𝑑),𝛾=1+𝛼,π‘Œ=(π›Όπœ™(𝑑)π‘Ÿ(𝑑))𝛼/(𝛼+1)||π‘’ξ…ž||+𝐺(𝑑)𝑖1/(𝛼+1)||πœ™ξ…ž||(𝑑)ξƒ­(𝛼+1)πœ™(𝑑)𝛼,(2.10) by Lemma 2.1 and (2.9), we have ξ€œπ‘‘π‘–π‘ π‘–ξƒ©πœ™(𝑑)𝑝(𝑑)+π‘šξ“π‘—=1𝑄𝑗ξƒͺ𝐺(𝑑)π‘–ξ€œ(𝑒(𝑑))𝑑𝑑≀𝑑𝑖𝑠𝑖||π‘’πœ™(𝑑)π‘Ÿ(𝑑)ξ…ž||+𝐺(𝑑)𝑖1/(𝛼+1)||πœ™(𝑒(𝑑))ξ…ž||(𝑑)ξƒ­(𝛼+1)πœ™(𝑑)𝛼+1𝑑𝑑,(2.11) which contradicts with (2.3). This completes the proof of Theorem 2.2.

Corollary 2.3. If πœ™(𝑑)≑1 in Theorem 2.2, and (2.3) is replaced by π‘„π‘–ξ€œ(𝑒)∢=𝑑𝑖𝑠𝑖𝑝(𝑑)+π‘šξ“π‘—=1𝑄𝑗ξƒͺ𝐺(𝑑)𝑖||𝑒(𝑒(𝑑))βˆ’π‘Ÿ(𝑑)ξ…ž||(𝑑)𝛼+1𝑑𝑑>0,(2.12) for 𝑖=1,2. Then, (1.1) is oscillatory.

If we choose 𝐺1(𝑒)=𝐺2(𝑒)=𝑒𝛼+1 in Corollary 2.3, then we have the following corollary.

Corollary 2.4. Suppose that for any 𝑇β‰₯𝑑0, there exist 𝑇≀𝑠1<𝑑1≀𝑠2<𝑑2 such that (2.2) is true. Let 𝐷(𝑠𝑖,𝑑𝑖)={π‘’βˆˆπΆ1[𝑠𝑖,𝑑𝑖]βˆΆπ‘’(𝑑)β‰’0,𝑒(𝑠𝑖)=𝑒(𝑑𝑖)=0} for 𝑖=1,2. If there exist π‘’βˆˆπ·(𝑠𝑖,𝑑𝑖) such that ξ‚π‘„π‘–ξ€œ(𝑒)∢=𝑑𝑖𝑠𝑖𝑝(𝑑)+π‘šξ“π‘—=1𝑄𝑗ξƒͺ||||(𝑑)𝑒(𝑑)𝛼+1||π‘’βˆ’π‘Ÿ(𝑑)ξ…ž||(𝑑)𝛼+1𝑑𝑑>0,(2.13) for 𝑖=1,2. Then, (1.3) is oscillatory.

Remark 2.5. Corollary 2.4 is closely related to the (𝛼+1)-degree functional (1.8), so Theorem 2.2, Corollaries 2.3, and 2.4 are generalizations of Theorem 1.2, and improvement of Theorem 1.1 since the positive constant 𝛼 in Theorem 2.2 and Corollary 2.3 can be selected as any number lying in (0,∞). We note further that in most cases, oscillation criteria are obtained using the same auxiliary function on [𝑠1,𝑑1] and [𝑠2,𝑑2], we note that such functions can be selected differently.

Remark 2.6. If 𝐺(𝑒)≑𝑒𝛼+1, then Theorem 2.2 reduces to Theorem 1.5, and if 𝑝(𝑑)≑0, 𝑗=1, Theorem 2.2 reduces to Theorem 1.4. So Theorem 2.2 and Corollary 2.3 are generalizations of the papers by Zheng et al. [10] and Shao [9].

Remark 2.7. The hypothesis (2.2) in Theorem 2.2 and Corollary 2.3 can be replaced by the following condition: 𝑠𝑒(𝑑)β‰₯0,π‘‘βˆˆ1,𝑑1ξ€»,𝑠≀0,π‘‘βˆˆ2,𝑑2ξ€».(2.14) The conclusion is still true for these cases.

Example 2.8. Consider the following forced mixed nonlinearities differential equation: ξ€·π›Ύπ‘‘βˆ’πœ†/3π‘¦ξ…žξ€Έ(𝑑)ξ…ž||||+𝑝(𝑑)𝑦(𝑑)+π‘ž(𝑑)𝑦(𝑑)2𝑦(𝑑)=βˆ’sin3𝑑,𝑑β‰₯2πœ‹,(2.15) where 𝛾,πœ†>0 are constants, π‘ž(𝑑)=π‘‘βˆ’πœ†exp(3sin𝑑), 𝑝(𝑑)=π‘‘βˆ’πœ†/3exp(sin𝑑), for π‘‘βˆˆ[2π‘›πœ‹,(2𝑛+1)πœ‹), and π‘ž(𝑑)=π‘‘βˆ’πœ†exp(βˆ’3sin𝑑), 𝑝(𝑑)=π‘‘βˆ’πœ†/3exp(βˆ’sin𝑑), for π‘‘βˆˆ[(2𝑛+1)πœ‹,(2𝑛+2)πœ‹), 𝑛>0 is an integer, Shao [9] obtain oscillation for (2.15) when 𝐾(𝑑)≑0. Using Theorem 2.2, we can easily verify that 𝑄1(𝑑)=(3/2)3√2π‘‘βˆ’πœ†/3exp(sin𝑑)sin2𝑑 for π‘‘βˆˆ[2π‘›πœ‹,(2𝑛+1)πœ‹), and 𝑄1(𝑑)=(3/2)3√2π‘‘βˆ’πœ†/3exp(βˆ’sin𝑑)sin2𝑑 for π‘‘βˆˆ[(2𝑛+1)πœ‹,(2𝑛+2)πœ‹). For any 𝑇β‰₯1, we choose 𝑛 sufficiently large so that π‘›πœ‹=2π‘˜πœ‹β‰₯𝑇 and 𝑠1=2π‘˜πœ‹ and 𝑑1=(2π‘˜+1)πœ‹, we select 𝑒(𝑑)=sin𝑑β‰₯0, 𝐺1(𝑒)=𝑒2exp(βˆ’π‘’) (we note that (πΊξ…ž1(𝑒))2≀4𝐺1(𝑒) for 𝑒β‰₯0), πœ™(𝑑)=π‘‘πœ†/3, then we have ξ€œπ‘‘1𝑠1ξ€·πœ™(𝑑)𝑝(𝑑)+𝑄1(𝐺𝑑)1(ξ€œπ‘’(𝑑))𝑑𝑑=πœ‹0sin23𝑑𝑑𝑑+23√2ξ€œπœ‹0sin4πœ‹π‘‘π‘‘π‘‘=2+983βˆšξ€œ2,𝑑1𝑠1||π‘’πœ™(𝑑)𝑝(𝑑)ξ…ž||+𝐺(𝑑)11/(𝛼+1)||πœ™(𝑒(𝑑))ξ…ž||(𝑑)ξƒ­(𝛼+1)πœ™(𝑑)𝛼+1ξ€œπ‘‘π‘‘=𝛾(2π‘˜+1)πœ‹2π‘˜πœ‹ξ‚Έπœ†|||||cos𝑑|+sin𝑑exp(3sin𝑑/2)ξ‚Ή2𝑑2ξ€œπ‘‘π‘‘<𝛾(2π‘˜+1)πœ‹2π‘˜πœ‹ξ‚΅1+πœ†π‘’3/22ξ‚Ά2𝑑𝑑=𝛾1+πœ†π‘’3/22ξ‚Ά2πœ‹.(2.16) So we have π‘„πœ™1(𝑒)>0 provided, 0<𝛾<(4πœ‹+93√2)/2(2+πœ†π‘’3/2)2πœ‹. Similarly, for 𝑠2=(2π‘˜+1)πœ‹ and 𝑑2=(2π‘˜+2)πœ‹, we select 𝑒(𝑑)=sin𝑑≀0, 𝐺2(𝑒)=𝑒2exp(𝑒) (we note that (πΊξ…ž2(𝑒))2≀4𝐺2(𝑒) for 𝑒≀0), we can show that the integral inequality π‘„πœ™2(𝑒)>0 for 0<𝛾<(4πœ‹+93√2)/2(2+πœ†π‘’3/2)2πœ‹. So (2.15) is oscillatory for 0<𝛾<(4πœ‹+93√2)/2(2+πœ†π‘’3/2)2πœ‹ by Theorem 2.2.

Example 2.9. Consider the following forced mixed nonlinearities differential equation: ξ‚€π‘‘βˆ’πœ†||π‘¦ξ…ž||(𝑑)π›Όβˆ’1π‘¦ξ…žξ‚(𝑑)ξ…ž||||+𝑝(𝑑)𝑦(𝑑)π›Όβˆ’1𝑦(𝑑)+π‘ž(𝑑)𝑦3(𝑑)=βˆ’sin1/3𝑑,(2.17) for 𝑑β‰₯2πœ‹, where 𝑝(𝑑)=πΎπ‘‘βˆ’πœ†exp(sin𝑑), π‘ž(𝑑)=π‘‘βˆ’9πœ†/5exp(9sin𝑑/5), for π‘‘βˆˆ[2π‘›πœ‹,(2𝑛+1)πœ‹), and 𝑝(𝑑)=πΎπ‘‘βˆ’πœ†exp(βˆ’sin𝑑), π‘ž(𝑑)=π‘‘βˆ’9πœ†/5exp(βˆ’9sin𝑑/5), for π‘‘βˆˆ[(2𝑛+1)πœ‹,(2𝑛+2)πœ‹), 𝑛>0 is an integer, 𝐾,πœ†>0 are constants and 𝛼=5/3>1, 𝛽=3. Obviously, Theorem 1.1 cannot be applied to this case. However, we conclude that (2.17) is oscillatory for 𝐾>(3/4)(1+3πœ†π‘’/8)8/3πœ‹βˆ’9/55/944/9. Since the zeros of the forcing term βˆ’sin1/3𝑑 are π‘›πœ‹, let 𝑒(𝑑)=sin𝑑 and πœ™(𝑑)=π‘‘πœ†. Using Theorem 2.2, we can easily verify that 𝑄(𝑑)=(9/55/944/9)π‘‘βˆ’πœ†exp(sin𝑑)sin4/27𝑑 for π‘‘βˆˆ[2π‘›πœ‹,(2𝑛+1)πœ‹), and 𝑄(𝑑)=(9/55/944/9)π‘‘βˆ’πœ†exp(βˆ’sin𝑑)sin4/27𝑑 for π‘‘βˆˆ[(2𝑛+1)πœ‹,(2𝑛+2)πœ‹). For any 𝑇β‰₯1, choose 𝑛 sufficiently large so that π‘›πœ‹=2π‘˜πœ‹β‰₯𝑇 and 𝑠1=2π‘˜πœ‹ and 𝑑1=(2π‘˜+1)πœ‹. For π‘‘βˆˆ[𝑠1,𝑑1], we select 𝐺1(𝑒)=𝑒8/3exp(βˆ’π‘’) (we note that (πΊξ…ž1(𝑒))8/3≀(8/3)8/3(𝐺1(𝑒))5/3 for 𝑒β‰₯0). It is easy to verify the following estimations: ξ€œπ‘‘1𝑠1πœ™(𝑑)(𝑝(𝑑)+𝑄(𝑑))𝐺1(=ξ€œπ‘’(𝑑))𝑑𝑑(2π‘˜+1)πœ‹2π‘˜πœ‹sin8/3𝑑9𝐾+55/944/9sin4/27𝑑>ξ‚΅9𝑑𝑑𝐾+55/944/9ξ‚Άξ€œ(2π‘˜+1)πœ‹2π‘˜πœ‹sin34𝑑𝑑𝑑=3ξ‚΅9𝐾+55/944/9ξ‚Ά,ξ€œπ‘‘1𝑠1||π‘’πœ™(𝑑)π‘Ÿ(𝑑)ξ…ž||+𝐺(𝑑)11/(𝛼+1)||πœ™(𝑒(𝑑))ξ…ž||(𝑑)ξƒ­(𝛼+1)πœ™(𝑑)𝛼+1=ξ€œπ‘‘π‘‘(2π‘˜+1)πœ‹2π‘˜πœ‹ξƒ¬|cos𝑑|+3πœ†π‘’βˆ’3sin𝑑/8||||sin𝑑8𝑑8/3<ξ€œπ‘‘π‘‘(2π‘˜+1)πœ‹2π‘˜πœ‹ξ‚€1+3πœ†π‘’88/3𝑑𝑑=1+3πœ†π‘’88/3πœ‹.(2.18) So we have π‘„πœ™1(𝑒)>0. Similarly, for 𝑠2=(2π‘˜+1)πœ‹ and 𝑑2=(2π‘˜+2)πœ‹, we select 𝑒(𝑑)=sin𝑑<0, 𝐺2(𝑒)=𝑒8/3exp(𝑒) (we note that (πΊξ…ž2(𝑒))8/3≀(8/3)8/3(𝐺2(𝑒))5/3 for 𝑒≀0), we can show that the integral inequality π‘„πœ™2(𝑒)>0. So (2.17) is oscillatory for 𝐾>(3/4)(1+3πœ†π‘’/8)8/3πœ‹βˆ’9/55/944/9 by Theorem 2.2.

Acknowledgment

This research was partially supported by the NSF of China (Grants nos. 11171178 and 11271225) and Science and Technology Project of High Schools of Shandong Province (Grant no. J12LI52).