Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2014, Article ID 371204, 7 pages
http://dx.doi.org/10.1155/2014/371204
Research Article

A Conceptual Architecture for Adaptive Human-Computer Interface of a PT Operation Platform Based on Context-Awareness

Beijing Institute of Technology, School of Mechanical Engineering, Beijing 100081, China

Received 31 December 2013; Revised 14 February 2014; Accepted 4 March 2014; Published 3 April 2014

Academic Editor: Wuhong Wang

Copyright © 2014 Qing Xue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. M. Feigh, M. C. Dorneich, and C. C. Hayes, “Toward a characterization of adaptive systems a framework for researchers and system designers,” Human Factors: The Journal of the Human Factors and Ergonomics Society, vol. 54, no. 6, pp. 1008–1024, 2012. View at Google Scholar
  2. P. R. Smart, A. Russell, N. R. Shadbolt, M. C. Shraefel, and L. A. Carr, “AKTiveSA: a technical demonstrator system for enhanced situation awareness,” Computer Journal, vol. 50, no. 6, pp. 703–716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. G. Yen and D. Acay, “Adaptive user interfaces in complex supervisory tasks,” ISA Transactions, vol. 48, no. 2, pp. 196–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Letsu-Dake and C. A. Ntuen, “A case study of experimental evaluation of adaptive interfaces,” International Journal of Industrial Ergonomics, vol. 40, no. 1, pp. 34–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Letsu-Dake and C. A. Ntuen, “A conceptual model for designing adaptive human-computer interfaces using the living systems theory,” Systems Research and Behavioral Science, vol. 26, no. 1, pp. 15–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. W. W. Noah and S. M. Halpin, “Adaptive user interfaces for planning and decision aids in C−3I systems,” IEEE Transactions on Systems, Man and Cybernetics, vol. 16, no. 6, pp. 909–918, 1986. View at Google Scholar · View at Scopus
  7. Y. J. Kim and C. M. Hoffmann, “Enhanced battlefield visualization for situation awareness,” Computers and Graphics (Pergamon), vol. 27, no. 6, pp. 873–885, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Wang, Y. Mao, J. Jin et al., “Driver's various information process and multi-ruled decision-making mechanism: a fundamental of intelligent driving shaping model,” International Journal of Computational Intelligence Systems, vol. 4, no. 3, pp. 297–305, 2011. View at Google Scholar · View at Scopus
  9. A. Schmidt, M. Beigl, and H.-W. Gellersen, “There is more to context than location,” Computers and Graphics (Pergamon), vol. 23, no. 6, pp. 893–901, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. S. S. Yau, D. Huang, H. Gong, and Y. Yao, “Support for situation awareness in trustworthy ubiquitous computing application software,” Software—Practice and Experience, vol. 36, no. 9, pp. 893–921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdonckt, “A unifying reference framework for multi-target user interfaces,” Interacting with Computers, vol. 15, no. 3, pp. 289–308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Madkour, D. E. L. Ghanami, A. Maach et al., “Context-aware service adaptation: an approach based on fuzzy sets and service composition,” Journal of Information Science & Engineering, vol. 29, no. 1, 2013. View at Google Scholar
  13. T. Patkos, A. Bikakis, G. Antoniou et al., “Design and challenges of a semantics-based framework for context-aware services,” International Journal of Reasoning-Based Intelligent Systems, vol. 1, no. 1, pp. 18–30, 2009. View at Google Scholar
  14. K. Henricksen and J. Indulska, “Developing context-aware pervasive computing applications: models and approach,” Pervasive and Mobile Computing, vol. 2, no. 1, pp. 37–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Bálint, “Adaptive human-computer interfaces for man-machine interaction in computer-integrated systems,” Computer Integrated Manufacturing Systems, vol. 8, no. 2, pp. 133–142, 1995. View at Google Scholar · View at Scopus
  16. ATTN:ATZL-SWW U.S. Army Combined Arms Center, “Battlefield visualization concept. Department of the ArmyTRADOC Pamphlet 525-70,” 1995.
  17. A. Savidis and C. Stephanidis, “Inclusive development: software engineering requirements for universally accessible interactions,” Interacting with Computers, vol. 18, no. 1, pp. 71–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. P. Krkkinen, “Boosting intelligence analysis process and situation awareness using the self-organizing map,” in Defense, Security, and Sensing. International Society for Optics and Photonics, Proceedings of the SPIE, 2009.