Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2015, Article ID 586842, 6 pages
Research Article

Optimal Design of FPGA Switch Matrix with Ion Mobility Based Nonvolatile ReRAM

School of Computer Science and Technology, Zhoukou Normal University, Zhoukou 466001, China

Received 27 December 2014; Accepted 15 February 2015

Academic Editor: Zidong Wang

Copyright © 2015 Peng Hai-yun and Zhou Wen-gang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


There are high demands for research of new device with greater accessing speed and stability to replace the current SRAM storage cell. The resistive random access memory (ReRAM) is a metal oxide which is based on nonvolatile memory device possessing the characteristics of high read/write speed, high storage density, low power, low cost, very small cell, being nonvolatile, and unlimited writing endurance. The device has extreme short erasing time and the stored charge cannot be destroyed after power-off. Therefore, the ReRAM device is a significant storage device for many applications in the next generation. In this paper, we first explored the mechanism of the ReRAM device based on ion mobility model and then applied this device to optimize the design of FPGA switching matrix. The results show that it is beneficial to enhance the FPGA performance to replace traditional SRAM cells with ReRAM cells for the switching matrix.