Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2015, Article ID 842792, 9 pages
http://dx.doi.org/10.1155/2015/842792
Research Article

Mathematical Modelling, Simulation, and Optimal Control of the 2014 Ebola Outbreak in West Africa

1Mathématiques pour l’Industrie et la Physique, Institut de Mathématiques de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, France
2Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Received 26 December 2014; Accepted 28 February 2015

Academic Editor: Sanling Yuan

Copyright © 2015 Amira Rachah and Delfim F. M. Torres. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Barry, F. A. Traoré, F. B. Sako et al., “Ebola outbreak in Conakry, Guinea: epidemiological, clinical, and outcome features,” Médecine et Maladies Infectieuses, vol. 44, no. 11-12, pp. 491–494, 2014. View at Publisher · View at Google Scholar
  2. J. A. Lewnard, M. L. Ndeffo Mbah, J. A. Alfaro-Murillo et al., “Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis,” The Lancet Infectious Diseases, vol. 14, no. 12, pp. 1189–1195, 2014. View at Publisher · View at Google Scholar
  3. WHO, “Report of an International Study Team. Ebola haemorrhagic fever in Sudan 1976,” Bulletin of the World Health Organization, vol. 56, no. 2, pp. 247–270, 1978. View at Google Scholar
  4. Report of an International Commission, “Ebola haemorrhagic fever in Zaire, 1976,” Bulletin of the World Health Organization, vol. 56, no. 2, pp. 271–293, 1978. View at Google Scholar
  5. S. I. Okware, F. G. Omaswa, S. Zaramba et al., “An outbreak of Ebola in Uganda,” Tropical Medicine and International Health, vol. 7, no. 12, pp. 1068–1075, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Legrand, R. F. Grais, P. Y. Boelle, A. J. Valleron, and A. Flahault, “Understanding the dynamics of Ebola epidemics,” Epidemiology and Infection, vol. 135, no. 4, pp. 610–621, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. F. Dowell, R. Mukunu, T. G. Ksiazek, A. S. Khan, P. E. Rollin, and C. J. Peters, “Transmission of Ebola hemorrhagic fever: a study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995. Commission de Lutte contre les Epidémies a Kikwit,” Journal of Infectious Diseases, vol. 179, supplement 1, pp. S87–S91, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Borio, T. Inglesby, C. J. Peters et al., “Hemorrhagic fever viruses as biological weapons: Medical and public health management,” Journal of the American Medical Association, vol. 287, no. 18, pp. 2391–2405, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. J. Peters and J. W. LeDuc, “An introduction to Ebola: the virus and the disease,” Journal of Infectious Diseases, vol. 179, supplement 1, 1999. View at Google Scholar · View at Scopus
  10. G. Chowell, J. M. Hayman, L. M. A. Bettencourt, and C. Castillo-Chavez, Mathematical and Statistical Estimation Approaches in Epidemiology, Springer, Dordrecht, The Netherlands, 2009.
  11. D. Zeng, H. Chen, C. Castillo-Chavez, W. B. Lober, and M. Thurmond, Infectious Disease Informatics and Biosurveillance, vol. 27 of Integrated Series in Information Systems, Springer, New York, NY, USA, 2011.
  12. G. Chowell, N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore, and J. M. Hyman, “The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda,” Journal of Theoretical Biology, vol. 229, no. 1, pp. 119–126, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. V. Kaurov, “Modeling a pandemic like ebola with the Wolfram language,” Technical Communication & Strategy, 2014, http://blog.wolfram.com/2014/11/04/modeling-a-pandemic-like-ebola-with-the-wolfram-language/. View at Google Scholar
  14. C. P. Farrington, M. N. Kanaan, and N. J. Gay, “Branching process models for surveillance of infectious diseases controlled by mass vaccination,” Biostatistics, vol. 4, no. 2, pp. 279–295, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. Forum on Medical and Public Health Preparedness for Catastrophic Events, The 2009 H1N1 Influenza Vaccination Campaign: Summary of a Workshop Series, The National Academies Press, Washington, DC, USA, 2010.
  16. W. Robert, Tindle Vaccines for Human Papillomavirus Infection and Disease Medical Intelligence Unit, Medical Intelligence Unit, R. G. Landes Company, Austin, Tex, USA, 1999.
  17. H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, “Vaccination models and optimal control strategies to dengue,” Mathematical Biosciences, vol. 247, pp. 1–12, 2014. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  18. WHO, Ebola Response Roadmap—Situation Report Update, World Health Organization, 2014, http://www.who.int/csr/disease/ebola/situation-reports/en.
  19. World Health Organisation (WHO), Ebola Response Roadmap Situation Report, World Health Organisation, Geneva, Switzerland, 2014, http://apps.who.int/iris/bitstream/10665/137376/1/roadmapsitrep_29Oct2014_eng.pdf?ua=1.
  20. C. L. Althaus, “Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in West Africa,” PLoS Currents Outbreaks, 2014. View at Publisher · View at Google Scholar
  21. J. Astacio, D. Briere, M. Guilléon, J. Martinez, F. Rodriguez, and N. Valenzuela-Campos, “Mathematical models to study the outbreaks of Ebola,” Report BU-1365-M, 1996. View at Google Scholar
  22. M. A. Lewis, M. Dietel, P. Scriba, and W. K. Raff, Biology and Epidemiology of Hormone Replacement Therapy, Springer, Berlin, Germany, 2006.
  23. A. J. Valleron, D. Schwartz, M. Goldberg, and R. Salamon, Collectif Lépidémiologie Humaine, Conditions de Son Développement en France, et Rôle des Mathématiques, vol. 462, Institut de France Académie des Sciences, 2006.
  24. M. J. Yon, Modélisation de la propagation d'un virus, INSA Rouen, 2010.
  25. H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, “Dynamics of dengue epidemics when using optimal control,” Mathematical and Computer Modelling, vol. 52, no. 9-10, pp. 1667–1673, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  26. P. Rodrigues, C. J. Silva, and D. F. M. Torres, “Cost-effectiveness analysis of optimal control measures for tuberculosis,” Bulletin of Mathematical Biology, vol. 76, no. 10, pp. 2627–2645, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  27. C. J. Silva and D. F. M. Torres, “Optimal control for a tuberculosis model with reinfection and post-exposure interventions,” Mathematical Biosciences, vol. 244, no. 2, pp. 154–164, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  28. D. Ariens, B. Houska, and H. J. Ferreau, ACADO Toolkit User's Manual, Toolkit for Automatic Control and Dynamic Optimization, 2010, http://www.acadotoolkit.org.
  29. H. G. Bock and K. J. Pitt, “A multiple shooting algorithm for direct solution of optimal control problems,” in Proceedings of the 9th IFAC World Congress, pp. 243–247, Pergamon Press, Budapest, Hungary, 1984.