Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2016 (2016), Article ID 1082837, 10 pages
http://dx.doi.org/10.1155/2016/1082837
Research Article

An Improved Gaussian Mixture CKF Algorithm under Non-Gaussian Observation Noise

College of Automation, Harbin Engineering University, Harbin 150001, China

Received 14 March 2016; Revised 10 June 2016; Accepted 16 June 2016

Academic Editor: Juan R. Torregrosa

Copyright © 2016 Hongjian Wang and Cun Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, John Wiley & Sons, New York, NY, USA, 2001.
  2. O. Levent and F. A. Aliev, “Comment on ‘adaptive fading Kalman filter with an application’,” Automatica, vol. 34, no. 12, pp. 1663–1664, 1998. View at Google Scholar
  3. D. H. Zhou and P. M. Frank, “Strong tracking filtering of nonlinear time-varying stochastic systems with coloured noise: application to parameter estimation and empirical robustness analysis,” International Journal of Control, vol. 65, no. 2, pp. 295–307, 1996. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. M. Nørgaard, N. K. Poulsen, and O. Ravn, “New developments in state estimation for nonlinear systems,” Automatica, vol. 36, no. 11, pp. 1627–1638, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. M. Norgaard, K. N. Poulsen, and O. Ravn, Advances in Derivative-Free State Estimation for Nonlinear Systems, Department of Mathematical Modeling, Technical University of Denmark, Kongens Lyngby, Denmark, 2000.
  6. S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Fan and Y. Li, “Accuracy analysis of sigma-point Kalman filters,” in Proceedings of the Chinese Control and Decision Conference (CCDC '09), pp. 2883–2888, Guilin, China, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. X.-X. Wang, L. Zhao, Q.-X. Xia, W. Cao, and L. Li, “Design of unscented Kalman filter with correlative noises,” Control Theory & Applications, vol. 27, no. 10, pp. 1362–1368, 2010. View at Google Scholar · View at Scopus
  9. W. Xiaoxu, Z. Lin, and P. Quan, “Design of UKF with correlative noises based on minimum mean square error estimation,” Control and Decision, vol. 25, no. 9, pp. 1393–1398, 2010. View at Google Scholar
  10. K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,” IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 910–927, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Transactions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. A. Dhital, Bayesian Filtering for Dynamic Systems with Applications to Tracking, Universitat Politecnica de Ctalunya, Barcelona, Spain, 2010.
  13. B. Jia, M. Xin, and Y. Cheng, “High-degree cubature Kalman filter,” Automatica, vol. 49, no. 2, pp. 510–518, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. O. Cappe, S. J. Godsill, and E. Moulines, “An overview of existing methods and recent advances in sequential Monte Carlo,” Proceedings of the IEEE, vol. 95, no. 5, pp. 899–924, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. L. Alspach and H. W. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum approximations,” IEEE Transactions on Automatic Control, vol. 17, no. 4, pp. 439–448, 1972. View at Google Scholar · View at Scopus
  16. G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “Adaptive Gaussian sum filter for nonlinear Bayesian estimation,” IEEE Transactions on Automatic Control, vol. 56, no. 9, pp. 2151–2156, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  17. X. Y. Fu and Y. M. Jia, “An improvement on resampling algorithm of particle filters,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5414–5420, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  18. N. Kabaoglu, “Target tracking using particle filters with support vector regression,” IEEE Transactions on Vehicular Technology, vol. 58, no. 5, pp. 2569–2573, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. P. H. Leong, S. Arulampalam, T. A. Lamahewa, and T. D. Abhayapala, “A Gaussian-sum based cubature Kalman filter for bearings-only tracking,” IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 2, pp. 1161–1176, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-B. Kong and X.-X. Feng, “Passive target tracking algorithm based on improved gaussian mixture particle filter,” Modern Radar, vol. 34, no. 7, pp. 44–50, 2012. View at Google Scholar
  21. G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “Uncertainty propagation for nonlinear dynamic systems using gaussian mixture models,” Journal of Guidance, Control, and Dynamics, vol. 31, no. 6, pp. 1623–1633, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “A novel Gaussian sum filter method for accurate solution to the nonlinear filtering problem,” in Proceedings of the 11th International Conference on Information Fusion (FUSION '08), pp. 1–8, Cologne, Germany, July 2008. View at Scopus
  23. J. L. Williams and P. S. Maybeck, “Cost-function-based Gaussian mixture reduction for target tracking,” in Proceedings of the 6th International Conference on Information Fusion (FUSION '03), pp. 1047–1054, IEEE, Queensland, Australia, July 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Terejanu, “An adaptive split-merge scheme for Uncertainty propagation using Gaussian mixture models,” in Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Fla, USA, January 2011. View at Publisher · View at Google Scholar
  25. X. R. Li and Z. Zhao, “Measuring estimator's credibility: noncredibility index,” in Proceedings of the 9th International Conference on Information Fusion (FUSION '06), pp. 1–8, IEEE, Florence, Italy, July 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. P. Blasch, A. Rice, and C. Yang, Nonlinear Track Evaluation Using Absolute and Relative Metrics, The International Society for Optical Engineering, 2006.