Special Issue

## Fractional Difference and Differential Operators and their Applications in Nonlinear Systems

View this Special Issue

Research Article | Open Access

Volume 2020 |Article ID 1020472 | https://doi.org/10.1155/2020/1020472

Muhammad Sarmad Arshad, Dumitru Baleanu, Muhammad Bilal Riaz, Muhammad Abbas, "A Novel 2-Stage Fractional Runge–Kutta Method for a Time-Fractional Logistic Growth Model", Discrete Dynamics in Nature and Society, vol. 2020, Article ID 1020472, 8 pages, 2020. https://doi.org/10.1155/2020/1020472

# A Novel 2-Stage Fractional Runge–Kutta Method for a Time-Fractional Logistic Growth Model

Accepted27 Mar 2020
Published10 Jun 2020

#### Abstract

In this paper, the fractional Euler method has been studied, and the derivation of the novel 2-stage fractional Runge–Kutta (FRK) method has been presented. The proposed fractional numerical method has been implemented to find the solution of fractional differential equations. The proposed novel method will be helpful to derive the higher-order family of fractional Runge–Kutta methods. The nonlinear fractional Logistic Growth Model is solved and analyzed. The numerical results and graphs of the examples demonstrate the effectiveness of the method.

#### 1. Introduction

In the 20th century, important research in fractional calculus was published in the engineering and science literature. Progress of fractional calculus is reported in various applications in the field of integral equations, fluid mechanics, viscoelastic models, biological models, and electrochemistry [13]. Undoubtedly, fractional calculus is an efficient mathematical tool to solve various problems in mathematics, engineering, and sciences. To get more attention in this field and to validate its effectiveness, this paper contributes the solution of new and recent applications of fractional calculus in biological and engineering sciences [4, 5]. Recently, the tool of fractional calculus has been used to analyze the nonlinear dynamics of different problems [68].

Mostly, the analytical solutions cannot be obtained for fractional differential equations, so that there is a need of semianalytical and numerical methods to understand the effects of the solutions to the nonlinear problems [9]. In the recent decades, different methods have been implemented to solve the linear as well as the nonlinear dynamical systems, such as the Adomian decomposition method (ADM) [10], variational iteration method (VIM) [11], Homotopy perturbation method (HPM) [12], Homotopy perturbation method in association with the Laplace transform method [6], Homotopy analysis method (HAM) [13], and Homotopy analysis transform method (HATM) [7]. In the recent years, the novel numerical techniques have also been applied on a two-dimensional telegraph equation on arbitrary domains and modified diffusion equations with nonlinear source terms [1416].

In the recent past, many numerical methods have been used just for linear equations or often more smaller classes. The generalization of the classical Adams–Bashforth–Moulton method has been introduced for the numerical solutions of nonlinear fractional differential equations [17]. Odibat and Momani also develop the new method with the connection of fractional Euler method and modified Trapezoidal rule by using the generalized Taylor series expansion [18].

Moreover, scientists have been actively worked on logistic growth that is typically the common model of population growth. A biological population with a lot of food, space to grow and no threats from predators, and trends to grow at a rate that is proportional to the population in each unit of time is a certain percentage of the individuals who produce new individuals [1921].

In this paper, we derived the 2-stage fractional Runge–Kutta method by using the generalized Taylor series expansion in Section 2. Afterwards, we applied the proposed numerical method on different nonlinear fractional differential equations and present the numerical results in Section 3. More specifically, we have used the fractional Runge–Kutta Method to solve the fractional logistic growth model. The conclusion is drawn in Section 4.

#### 2. Method Description

In order to study the fractional differential equation, we will consider Caputo’s fractional order derivative. Caputo’s fractional order derivative is the modified form of the Riemann–Liouville definition and beneficial in dealing with the initial value problem more efficiently. Generalized Taylor’s formula is defined as follows.

##### 2.1. Generalized Taylor’s Formula

Here, we are defining generalized Taylor’s formula as given in [18], i.e, suppose that for , where . We havewith , .

##### 2.2. Fractional Euler Method

In order to derive the fractional Euler’s method to find the numerical solution of initial value problem with time-fractional derivative in Caputo’s sense, we consider the initial value problem of the formwhere represents the Caputo fractional differential operator [22]. Consider the initial value problem. Let be an interval for which we are finding the solution of the problem in equation (2). The collection of points are used to find the approximation. The interval is subdivided into subintervals of equal step size using the nodal points for . Suppose that , , and are continuous functions on the interval , and applying Taylor’s formula involving fractional derivatives, we have

For the very small step size, we neglect the higher terms involving or higher, and substituting the value of from equation (2), we obtain

By using the abovementioned equation, we can obtain the following iterative formula.

It is worth mentioning here that if , then fractional Euler’s method 2.3 reduced to classical Euler’s method. This is the generalization of classical Euler’s method.

##### 2.3. Fractional Runge–Kutta Method

This method is the generalization of the Runge–Kutta (RK) method of order 2. Consider fractional order initial value problem (2). The generalized Taylor expansion isand using the formula in equation (6) gives

Rearranging the abovementioned equation, we have

It can also be written as

In view of the abovementioned expression, the following formula is the 2-stage fractional Runge–Kutta method.where

One can easily verify that if , then the fractional order Runge–Kutta method 2.5 reduced to the classical Runge–Kutta method of order 2.

#### 3. Numerical Examples

To understand the methodology to apply the fractional Runge–Kutta method, we have solved three examples and also made a comparison with the exact solution.

Example 1. In the first example, we consider the inhomogeneous linear fractional differential equationsubject to the conditionswith the exact solutionBy using the fractional R–K Method, we obtain the iterative relation for equation (12).whereFigure 1 expresses the numerical solutions of equation (12) for different values of using the fractional Runge–Kutta method. Here, we can easily visualize in Table 1 that when we put the approximate solution coincide with the exact solution . In Table 2, we can further analyze the solutions of the problem for . Moreover, in Figure 2, hidden effects are visible by changing the values of which cannot be obtained by using integer order derivative. Accuracy will be improved by using the small mesh size.

 T 0.0 0 0 0 0.1 −0.0900 −0.0900 4.7820e − 06 0.2 −0.1600 −0.1600 9.1089e − 06 0.3 −0.2100 −0.2100 1.3024e − 05 0.4 −0.2400 −0.2400 1.6567 − e05 0.5 −0.2500 −0.2500 1.9772 − e05 0.6 −0.2400 −0.2400 2.2673e − 05 0.7 −0.2100 −0.2100 2.5297e − 05 0.8 −0.1600 −0.1600 2.7672e − 05 0.9 −0.0900 −0.0900 2.9820e − 05 1.0 0 3.1765e − 05 3.1765e − 05
 T 0.0 0 0 0 0.1 −0.0900 −0.0912 0.0012 0.2 −0.1600 −0.1700 0.0100 0.3 −0.2100 −0.2274 0.0174 0.4 −0.2400 −0.2626 0.0226 0.5 −0.2500 −0.2752 0.0252 0.6 −0.2400 −0.2650 0.0250 0.7 −0.2100 −0.2322 0.0222 0.8 −0.1600 −0.1766 0.0166 0.9 −0.0900 −0.0985 0.0085 1.0 0 0.0021 0.0021

Example 2. Consider the nonlinear fractional differential equationalong with the conditionsThe exact solution of equation (17) for is given byBy using the fractional R–K method, we get the iterative relation for equation (12).whereFigures 3 and 4 show numerical solutions of equation (17) for different values of using the fractional Runge–Kutta method. We can see in Table 3 that when , the approximate solution has excellent agreement with the exact solution . In Table 4, we can further analyze the solutions of the problem for . Moreover, the hidden nonlinearity effects are also visible in Table 2 by changing the value of . Accuracy will be improved by using the small mesh size.

 t 0.0 −2 −2 0 0.1 −1.8182 −1.8182 2.0884e − 05 0.2 −1.6667 −1.6667 2.9468e − 05 0.3 −1.5385 −1.5385 3.2069e − 05 0.4 −1.4286 −1.4286 3.1769 − e05 0.5 −1.3333 −1.3334 3.0117 − e05 0.6 −1.2500 −1.2500 2.7902e − 05 0.7 −1.1765 −1.1765 2.5530e − 05 0.8 −1.1111 −1.1111 2.3203e − 05 0.9 −1.0526 −1.0527 2.1018e − 05 1.0 −1 −1 1.9014e − 05
 t 0.0 −2 −2 0 0.1 −1.8182 −1.7914 0.0268 0.2 −1.6667 −1.6260 0.0406 0.3 −1.5385 −1.4909 0.0476 0.4 −1.4286 −1.3778 0.0507 0.5 −1.3333 −1.2816 0.0518 0.6 −1.2500 −1.1984 0.0516 0.7 −1.1765 −1.1258 0.0507 0.8 −1.1111 −1.0617 0.0494 0.9 −1.0526 −1.0046 0.0480 1.0 −1 −0.9535 0.0465

Example 3. Time-Fractional Logistic Growth Model
We consider the time-fractional logistic growth model represented by the equationwhere is the initial density of the population, is intrinsic growth rate of the population, and is the carrying capacity. The analytical solution of equation (22) is given byIn the review of the fractional Runge–Kutta method, we havewhereFigures 5 and 6 demonstrate the approximate solutions of fractional Logistic Growth Model represented by equation (22) for different values of using the fractional Runge–Kutta method.
Table 5 shows that when we put , the approximate solution has excellent agreement with the exact solution given in equation (23). In Table 6, we can further analyze the solutions of the problem for . Moreover, we can get better accuracy by using the small mesh size.

 t 0.0 20 20 0 0.1 19.0699 19.0700 2.3897e − 05 0.2 18.2621 18.2622 3.9362e − 05 0.3 17.5548 17.5548 4.9190e − 05 0.4 16.9309 16.9310 5.5198 − e05 0.5 16.3773 16.3774 5.8593 − e05 0.6 15.8833 15.8834 6.0190e − 05 0.7 15.4403 15.4404 6.0546e − 05 0.8 15.0412 15.0413 6.0048e − 05 0.9 14.6803 14.6803 5.8968e − 05 1.0 14.3527 14.3527 5.7498e − 05
 t 0.0 20 20 0 0.1 19.0699 18.9146 0.1553 0.2 18.2621 17.9941 0.2680 0.3 17.5548 17.2048 0.3500 0.4 16.9309 16.5217 0.4093 0.5 16.3773 15.9256 0.4518 0.6 15.8833 15.4018 0.4816 0.7 15.4403 14.9386 0.5017 0.8 15.0412 14.5269 0.5144 0.9 14.6803 14.1590 0.5213 1.0 14.3527 13.8288 0.5238

#### 4. Conclusions

The fundamental objective of this research is to construct the numerical scheme to solve fractional differential equations. The objective has been achieved by implementing the fractional numerical method (fractional Runge–Kutta method). The derivation of the method is also presented. The method is a new contribution and is reliable to find the solutions of problems which arise in applied sciences. The comparison of numerical results has been made with exact solutions. The proposed method is useful to derive the higher order family of fractional Runge Kutta Methods. Finally, the recent development in the field of fractional differential equations in applied mathematics makes it needed to implement on such equations to get the numerical solutions. We are hoping that this work is the active contribution in this direction.

#### Data Availability

No data were used to support this study.

#### Conflicts of Interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

#### References

1. A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, vol. 378, Springer, Berlin, Germany, 2014.
2. C. Drapaca, “Fractional calculus in neuronal electromechanics,” Journal of Mechanics of Materials and Structures, vol. 12, no. 1, p. 35, 2017. View at: Publisher Site | Google Scholar
3. E. Hernández-Balaguera, E. López-Dolado, and J. L. Polo, “Obtaining electrical equivalent circuits of biological tissues using the current interruption method, circuit theory and fractional calculus,” RSC Advances, vol. 6, no. 27, pp. 22312–22319, 2016. View at: Publisher Site | Google Scholar
4. S. He, N. A. A. Fataf, S. Banerjee, and K. Sun, “Complexity in the muscular blood vessel model with variable fractional derivative and external disturbances,” Physica A: Statistical Mechanics and Its Applications, vol. 526, Article ID 120904, 2019. View at: Publisher Site | Google Scholar
5. A. H. Bhrawy, E. H. Doha, D. Baleanu, S. S. Ezz-Eldien, and M. A. Abdelkawy, “An accurate numerical technique for solving fractional optimal control problems,” Differential Equations, vol. 16, no. 1, p. 47, 2015. View at: Google Scholar
6. S. Arshad, A. Sohail, and K. Maqbool, “Nonlinear shallow water waves: a fractional order approach,” Alexandria Engineering Journal, vol. 55, no. 1, pp. 525–532, 2016. View at: Publisher Site | Google Scholar
7. S. Arshad, A. M. Siddiqui, A. Sohail, K. Maqbool, and Z. Li, “Comparison of optimal homotopy analysis method and fractional homotopy analysis transform method for the dynamical analysis of fractional order optical solitons,” Advances in Mechanical Engineering, vol. 9, no. 3, 2017. View at: Publisher Site | Google Scholar
8. A. Sohail, S. Arshad, and Z. Ehsan, “Numerical analysis of plasma KdV equation: time-fractional approach,” International Journal of Applied and Computational Mathematics, vol. 3, no. S1, p. 1325, 2017. View at: Publisher Site | Google Scholar
9. X.-J. Yang, J. A. Tenreiro Machado, and H. M. Srivastava, “A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach,” Applied Mathematics and Computation, vol. 274, pp. 143–151, 2016. View at: Publisher Site | Google Scholar
10. S. Q. Wang, Y. J. Yang, and H. K. Jassim, “Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative,” Abstract and Applied Analysis, vol. 2014, Article ID 176395, 7 pages, 2014. View at: Publisher Site | Google Scholar
11. A. M. Wazwaz, “New (3 + 1)-dimensional nonlinear evolution equation: multiple soliton solutions,” Open Engineering, vol. 4, no. 4, p. 64, 2014. View at: Publisher Site | Google Scholar
12. X. J. Yang, H. M. Srivastava, and C. Cattani, “Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics,” Romanian Reports in Physics, vol. 67, no. 3, pp. 752–761, 2015. View at: Google Scholar
13. D. Das, P. C. Ray, R. K. Bera, and P. Sarkar, “Solution of nonlinear fractional differential equation (NFDE) by homotopy analysis method,” International Journal of Scientific Research and Education, vol. 3, no. 3, p. 3084, 2015. View at: Google Scholar
14. M. Aslefallah and E. Shivanian, “Nonlinear fractional integro-differential reaction-diffusion equation via radial basis functions,” The European Physical Journal Plus, vol. 130, no. 3, p. 47, 2015. View at: Publisher Site | Google Scholar
15. M. Aslefallah, S. Abbasbandy, and E. Shivanian, “Numerical solution of a modified anomalous diffusion equation with nonlinear source term through meshless singular boundary method,” Engineering Analysis with Boundary Elements, vol. 107, pp. 198–207, 2019. View at: Publisher Site | Google Scholar
16. M. Aslefallah and D. Rostamy, “Application of the singular boundary method to the two-dimensional telegraph equation on arbitrary domains,” Journal of Engineering Mathematics, vol. 118, no. 1, pp. 1–14, 2019. View at: Publisher Site | Google Scholar
17. K. Diethelm and A. D. Freed, Scientific Computing in Chemical Engineering II, Springer, Berlin, Germany, 1999.
18. Z. M. Odibat and S. Momani, “An algorithm for the numerical solution of differential equations of fractional order,” Journal of Applied Mathematics & Informatics, vol. 26, no. 1-2, pp. 15–27, 2008. View at: Google Scholar
19. T. Abdeljawad, Q. M. Al-Mdallal, and F. Jarad, “Fractional logistic models in the frame of fractional operators generated by conformable derivatives,” Chaos, Solitons & Fractals, vol. 119, pp. 94–101, 2019. View at: Publisher Site | Google Scholar
20. T. Abdeljawad, M. A. Hajji, Q. M. Al-Mdallal, and F. Jarad, “Analysis of some generalized ABC—fractional logistic models,” Alexandria Engineering Journal, 2020, In press. View at: Publisher Site | Google Scholar
21. E. E. Holmes, M. A. Lewis, J. E. Banks, and R. R. Veit, “Partial differential equations in ecology: spatial interactions and population dynamics,” Ecology, vol. 75, no. 1, pp. 17–29, 1994. View at: Publisher Site | Google Scholar
22. I. Podlubny, “The Laplace transform method for linear differential equations of the fractional order,” 1997, https://arxiv.org/abs/funct-an/9710005. View at: Google Scholar