Abstract

Ultrasound has been a popular clinical imaging modality for decades. It is well established as a means of displaying the macroscopic anatomy of soft-tissue structures. While conventional ultrasound methodologies (i.e., B-mode and Doppler methods) are well proven and continue to advance technically on a daily basis, e.g. by extending into higher frequencies and taking advantage of harmonic phenomena in tissues, fundamentally new ultrasound technologies also are emerging and offer exciting promise for making significant improvements in the clinical imaging of disease. These emerging methods include spectrum analysis, elasticity imaging, contrast-agent methods, and advanced flow detection and measurement techniques. Each provides independent information and, used alone, each can provide powerful new imaging capabilities; combined with each other, their capabilities may be even greater in many applications; and all in principle can be used in concert with other imaging modalities to offer the possibility of further improvements in disease detection, evaluation, and monitoring.