Abstract

There are numerous factors that recommend the use of biomarkers in drug development including the ability to provide a rational basis for selection of lead compounds, as an aid in determining or refining mechanism of action or pathophysiology, and the ability to work towards qualification and use of a biomarker as a surrogate endpoint. Examples of biomarkers come from many different means of clinical and laboratory measurement. Total cholesterol is an example of a clinically useful biomarker that was successfully qualified for use as a surrogate endpoint. Biomarkers require validation in most circumstances. Validation of biomarker assays is a necessary component to delivery of high-quality research data necessary for effective use of biomarkers. Qualification is necessary for use of a biomarker as a surrogate endpoint. Putative biomarkers are typically identified because of a relationship to known or hypothetical steps in a pathophysiologic cascade. Biomarker discovery can also be effected by expression profiling experiment using a variety of array technologies and related methods. For example, expression profiling experiments enabled the discovery of adipocyte related complement protein of 30 kD (Acrp30 or adiponectin) as a biomarker for in vivo activation of peroxisome proliferator-activated receptors (PPAR) γ activity.