Abstract

Pseudomonas aeruginosa is one of the major causes of infections including the hospital acquired (Nosocomial) infections. Detection of them and their antibiotic resistance profile by conventional method takes about three days. Recently, DNA based diagnostic methods are being used for the identification of the pathogens. Hence we have tested a rapid and sensitive method using DNA sequences as markers for detecting the presence of three genes coding for the enzymes that inactivate the two most commonly used Anti-pseudomonadal drugs such as β-lactam antibiotics (Penicillin, and its derivatives) and Aminoglycosides such as Gentamicin, Tobramycin, Amikacin, Streptomycin. The internal region of these genes were used for designing and synthesizing primers and these primers were used in Polymerase Chain Reaction (PCR) to screen for the presence of these genes in the clinical isolates and to label them non-radioactively with Biotin. They in turn were used to detect the presence of the antibiotic resistance genes in the clinical isolates by hybridization. The specificity (ratio of positive results obtained in both methods and the sensitivity (the minimum amount of sample DNA and the labeled probe required for the tests) were evaluated.