Disease Markers

Disease Markers / 2012 / Article

Open Access

Volume 32 |Article ID 293429 | 8 pages | https://doi.org/10.3233/DMA-2011-0871

Erythrocyte Sialic Acid Content during Aging in Humans: Correlation with Markers of Oxidative Stress

Received23 Feb 2012
Accepted23 Feb 2012

Abstract

Sialic acids are substituted neuraminic acid derivatives which are typically found at the outermost end of glycan chains on the membrane in all cell types. The role of erythrocyte membrane sialic acids during aging has been established however the relationship between sialic acid and oxidative stress is not fully understood. The present work was undertaken to analyze the relationship between erythrocyte membrane sialic acid with its plasma level, membrane and plasma lipid hydroperoxide levels and plasma total antioxidant capacity. Results show that sialic acid content decreases significantly (P < 0.001) in RBC membrane (r = −0.901) and increases in plasma (r = 0.860) as a function of age in humans. Lipid peroxidation measured in the form of hydroperoxides increases significantly (P < 0.001) in plasma (r = 0.830) and RBC membranes (r = 0.875) with age in humans. The Trolox Equivalent Total Antioxidant Capacity (TETAC) of plasma was found to be significantly decreased (P < 0.001, r = −0.844). We observe significant correlations between decrease of erythrocyte membrane sialic acid and plasma lipid hydroperoxide and TETAC. Based on the observed correlations, we hypothesize that increase in oxidative stress during aging may influence the sialic acid decomposition from membrane thereby altering the membrane configuration affecting many enzymatic and transporter activities. Considering the importance of plasma sialic acid as a diagnostic parameter, it is important to establish age-dependent reference.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

614 Views | 692 Downloads | 19 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.