Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35, Issue 6, Pages 653–660
http://dx.doi.org/10.1155/2013/127962
Research Article

An MLP Classifier for Prediction of HBV-Induced Liver Cirrhosis Using Routinely Available Clinical Parameters

1Department of Laboratory Medicine, Jinan Military General Hospital, Jinan, Shandong 250031, China
2Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433, China

Received 29 June 2013; Revised 25 September 2013; Accepted 9 October 2013

Academic Editor: Claudio Letizia

Copyright © 2013 Yuan Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Forner, J. M. Llovet, and J. Bruix, “Hepatocellular carcinoma,” The Lancet, vol. 379, no. 9822, pp. 1245–1255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Berzigotti, E. Ashkenazi, E. Reverter, J. G. Abraldes, and J. Bosch, “Non-invasive diagnostic and prognostic evaluation of liver cirrhosis and portal hypertension,” Disease Markers, vol. 31, no. 3, pp. 129–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Lavanchy, “Hepatitis B virus epidemiology, disease burden, treatment, arid current and emerging prevention and control measures,” Journal of Viral Hepatitis, vol. 11, no. 2, pp. 97–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Ringelhan, M. Heikenwalder, and U. Protzer, “Direct effects of hepatitis B virus-encoded proteins and chronic infection in liver cancer development,” Digestive Diseases, vol. 31, no. 1, pp. 138–151, 2013. View at Publisher · View at Google Scholar
  6. S. Erdogan, H. O. Dogan, S. Sezer et al., “The diagnostic value of non-invasive tests for the evaluation of liver fibrosis in chronic hepatitis B patients,” Scandinavian Journal of Clinical & Laboratory Investigation, 2013. View at Publisher · View at Google Scholar
  7. T. C. W. Poon, A. Y. Hui, H. L. Y. Chan et al., “Prediction of liver fibrosis and cirrhosis in chronic hepatitis B infection by serum proteomic fingerprinting: a pilot study,” Clinical Chemistry, vol. 51, no. 2, pp. 328–335, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Pinzani, K. Rombouts, and S. Colagrande, “Fibrosis in chronic liver diseases: diagnosis and management,” Journal of Hepatology, vol. 42, supplement 1, pp. S22–S36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Abenavoli, C. Corpechot, and R. Poupon, “Elastography in hepatology,” Canadian Journal of Gastroenterology, vol. 21, no. 12, pp. 839–842, 2007. View at Google Scholar · View at Scopus
  10. M. Fraquelli, C. Rigamonti, G. Casazza et al., “Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease,” Gut, vol. 56, no. 7, pp. 968–973, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Fraquelli and F. Branchi, “The role of transient elastography in patients with hepatitis B viral disease,” Digestive and Liver Disease, vol. 43, supplement 1, pp. S25–S31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Leroy, M.-N. Hilleret, N. Sturm et al., “Prospective comparison of six non-invasive scores for the diagnosis of liver fibrosis in chronic hepatitis C,” Journal of Hepatology, vol. 46, no. 5, pp. 775–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Sebastiani, “Serum biomarkers for the non-invasive diagnosis of liver fibrosis: the importance of being validated,” Clinical Chemistry and Laboratory Medicine, vol. 50, no. 4, pp. 595–597, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. “The guidelines of prevention and treatment for chronic hepatitis B,” Zhonghua Gan Zang Bing Za Zhi, vol. 13, pp. 881–891, 2005.
  15. R. N. H. Pugh, I. M. Murray Lyon, J. L. Dawson, M. C. Pietroni, and R. Williams, “Transection of the oesophagus for bleeding oesophageal varices,” The British Journal of Surgery, vol. 60, no. 8, pp. 646–649, 1973. View at Google Scholar · View at Scopus
  16. E. F. Mark Hall, G. Holmes, B. Pfahringer, P. Reutemann, and H. Ian, “The WEKA data mining software: an update,” ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009. View at Google Scholar
  17. Y. Cao, K. He, M. Cheng et al., “Two classifiers based on serum peptide pattern for prediction of HBV-induced liver cirrhosis using MALDI-TOF MS,” BioMed Research International, vol. 2013, Article ID 814876, 7 pages, 2013. View at Publisher · View at Google Scholar
  18. C.-T. Wai, J. K. Greenson, R. J. Fontana et al., “A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C,” Hepatology, vol. 38, no. 2, pp. 518–526, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. K. Sterling, E. Lissen, N. Clumeck et al., “Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection,” Hepatology, vol. 43, no. 6, pp. 1317–1325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. I. A. Vergara, T. Norambuena, E. Ferrada, A. W. Slater, and F. Melo, “StAR: a simple tool for the statistical comparison of ROC curves,” BMC Bioinformatics, vol. 9, article 265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Pinzani, M. Rosselli, and M. Zuckermann, “Liver cirrhosis,” Best Practice and Research, vol. 25, no. 2, pp. 281–290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Schuppan and N. H. Afdhal, “Liver cirrhosis,” The Lancet, vol. 371, no. 9615, pp. 838–851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Castera, “Noninvasive methods to assess liver disease in patients with hepatitis B or C,” Gastroenterology, vol. 142, no. 6, pp. 1293.e4–1302.e4, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Jin, Z. Lin, Y. Xin, X. Jiang, Q. Dong, and S. Xuan, “Diagnostic accuracy of the aspartate aminotransferase-to-platelet ratio index for the prediction of hepatitis B-related fibrosis: a leading meta-analysis,” BMC Gastroenterology, vol. 12, article 14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. M. S. V. B. Viana, K. Takei, D. C. C. Yamaguti, B. Guz, and E. Strauss, “Use of AST platelet ratio index (APRI Score) as an alternative to liver biopsy for treatment indication in chronic hepatitis C,” Annals of Hepatology, vol. 8, no. 1, pp. 26–31, 2009. View at Google Scholar · View at Scopus
  26. F. Guzelbulut, M. Sezikli, Z. Akkan-Cetinkaya, B. Yasar, S. Ozkara, and A. O. Kurdas-Ovunc, “AST-platelet ratio index in the prediction of significant fibrosis and cirrhosis in patients with chronic hepatitis B,” Turkish Journal of Gastroenterology, vol. 23, no. 4, pp. 353–358, 2012. View at Google Scholar
  27. W.-K. Seto, C.-F. Lee, C.-L. Lai et al., “A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B,” PLoS One, vol. 6, no. 8, Article ID e23077, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Yilmaz, O. Yonal, R. Kurt, M. Bayrak, B. Aktas, and O. Ozdogan, “Noninvasive assessment of liver fibrosis with the aspartate transaminase to platelet ratio index (APRI): usefulness in patients with chronic liver disease,” Hepatitis Monthly, vol. 11, no. 2, pp. 103–106, 2011. View at Google Scholar · View at Scopus
  29. C.-S. Lin, C.-S. Chang, S.-S. Yang, H.-Z. Yeh, and C.-W. Lin, “Retrospective evaluation of serum markers APRI and AST/ALT for assessing liver fibrosis and cirrhosis in chronic hepatitis B and C patients with hepatocellular carcinoma,” Internal Medicine, vol. 47, no. 7, pp. 569–575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. W. G. Shin, S. H. Park, M. K. Jang et al., “Aspartate aminotransferase to platelet ratio index (APRI) can predict liver fibrosis in chronic hepatitis B,” Digestive and Liver Disease, vol. 40, no. 4, pp. 267–274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Wang, L. Xue, R. Yan et al., “Comparison of FIB-4 and APRI in Chinese HBV-infected patients with persistently normal ALT and mildly elevated ALT,” Journal of Viral Hepatitis, vol. 20, no. 4, pp. e3–e10, 2013. View at Google Scholar
  32. H.-B. Liu, J.-P. Zhou, Y. Zhang, X.-H. Lv, and W. Wang, “Prediction on liver fibrosis using different APRI thresholds when patient age is a categorical marker in patients with chronic hepatitis B,” Clinica Chimica Acta, vol. 412, no. 1-2, pp. 33–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Ucar, S. Sezer, Z. Ginis et al., “APRI, the FIB-4 score, and Forn's index have noninvasive diagnostic value for liver fibrosis in patients with chronic hepatitis B,” European Journal of Gastroenterology & Hepatology, vol. 25, no. 9, pp. 1076–1081, 2013. View at Google Scholar
  34. G. H. Haydon, R. Jalan, M. Ala-Korpela et al., “Prediction of cirrhosis in patients with chronic hepatitis C infection by artificial neural network analysis of virus and clinical factors,” Journal of Viral Hepatitis, vol. 5, no. 4, pp. 255–264, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Cazzaniga, F. Salerno, G. Borroni et al., “Prediction of asymptomatic cirrhosis in chronic hepatitis C patients: accuracy of artificial neural networks compared with logistic regression models,” European Journal of Gastroenterology and Hepatology, vol. 21, no. 6, pp. 681–687, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Wang, Q. Wang, F. Shan, B. Liu, and C. Lu, “Identification of the risk for liver fibrosis on CHB patients using an artificial neural network based on routine and serum markers,” BMC Infectious Diseases, vol. 10, article 251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Y.-Y. Hsieh, S.-Y. Tung, I.-L. Lee et al., “FibroQ: an easy and useful noninvasive test for predicting liver fibrosis in patients with chronic viral hepatitis,” Chang Gung Medical Journal, vol. 32, no. 6, pp. 614–622, 2009. View at Google Scholar · View at Scopus
  38. Z. Hu, Y. Sun, Q. Wang et al., “Red blood cell distribution width is a potential prognostic index for liver disease,” Clinical Chemistry and Laboratory Medicine, vol. 51, no. 7, pp. 1403–1408, 2013. View at Google Scholar
  39. Y. Lou, M. Wang, and W. Mao, “Clinical usefulness of measuring red blood cell distribution width in patients with hepatitis B,” PLoS One, vol. 7, no. 5, Article ID e37644, 2012. View at Google Scholar
  40. S. Milić, I. Mikolašević, M. Radić, G. Hauser, and D. Štimac, “Clinical utility of red cell distribution width in alcoholic and non-alcoholic liver cirrhosis,” Collegium Antropologicum, vol. 35, no. 2, pp. 335–338, 2011. View at Google Scholar · View at Scopus
  41. G. Lippi, G. Targher, M. Montagnana, G. L. Salvagno, G. Zoppini, and G. C. Guidi, “Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients,” Archives of Pathology and Laboratory Medicine, vol. 133, no. 4, pp. 628–632, 2009. View at Google Scholar
  42. L. Mackelaite, Z. C. Alsauskas, and K. Ranganna, “Renal failure in patients with cirrhosis,” The Medical Clinics of North America, vol. 93, no. 4, pp. 855–869, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Lippi, G. Targher, M. Montagnana, G. L. Salvagno, G. Zoppini, and G. C. Guidi, “Relationship between red blood cell distribution width and kidney function tests in a large cohort of unselected outpatients,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 68, no. 8, pp. 745–748, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Forns, S. Ampurdanès, J. M. Llovet et al., “Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model,” Hepatology, vol. 36, no. 4, part 1, pp. 986–992, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Fung, C.-L. Lai, D. Y.-T. Fong, J. C.-H. Yuen, D. K.-H. Wong, and M.-F. Yuen, “Correlation of liver biochemistry with liver stiffness in chronic hepatitis B and development of a predictive model for liver fibrosis,” Liver International, vol. 28, no. 10, pp. 1408–1416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Ma, Y. Jiang, and G. Gong, “Evaluation of seven noninvasive models in staging liver fibrosis in patients with chronic hepatitis B virus infection,” European Journal of Gastroenterology & Hepatology, vol. 25, no. 4, pp. 428–434, 2013. View at Google Scholar