Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35, Issue 6, Pages 661–667
http://dx.doi.org/10.1155/2013/393020
Research Article

Sex-Specific Genomic Biomarkers for Individualized Treatment of Life-Threatening Diseases

1Department of Mathematics and Statistics, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840-1001, USA
2Department of Computer Science, University of California, Santa Cruz, CA 95064, USA
3Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
4Graduate Institute of Biostatistics and Biostatistics Center, China Medical University, Taichung, Taiwan

Received 30 June 2013; Revised 7 October 2013; Accepted 20 October 2013

Academic Editor: Kishore Chaudhry

Copyright © 2013 Hojin Moon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. R. Migeon, “Why females are mosaics, x-chromosome inactivation, and sex differences in disease,” Gender Medicine, vol. 4, no. 2, pp. 97–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Yagi, A. Morimoto, M. Eguchi et al., “Identification of a gene expression signature associated with pediatric AML prognosis,” Blood, vol. 102, no. 5, pp. 1849–1856, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. L. Blum and P. Langley, “Selection of relevant features and examples in machine learning,” Artificial Intelligence, vol. 97, no. 1-2, pp. 245–271, 1997. View at Google Scholar · View at Scopus
  4. R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997. View at Google Scholar · View at Scopus
  5. H. Ahn and H. Moon, “Classification: supervised learning with high-dimensional biological data,” in Statistical Bioinformatics, A Guide for Life and Biomedical Science Researchers, J. K. Lee, Ed., Chapter 8, John Wiley & Sons, Chichester, UK, 2009. View at Google Scholar
  6. S. Dudoit, J. Fridlyand, and T. P. Speed, “Comparison of discrimination methods for the classification of tumors using gene expression data,” Journal of the American Statistical Association, vol. 97, no. 457, pp. 77–86, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Liu, J. Li, and L. Wong, “A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns,” Genome Informatics Series, vol. 13, pp. 51–60, 2002. View at Google Scholar · View at Scopus
  8. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification using support vector machines,” Machine Learning, vol. 46, no. 1–3, pp. 389–422, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C.-A. N. Tsai, C.-H. Chen, T.-C. Lee, I.-C. Ho, U.-C. Yang, and J. J. Chen, “Gene selection for sample classifications in microarray experiments,” DNA and Cell Biology, vol. 23, no. 10, pp. 607–614, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Díaz-Uriarte and S. Alvarez de Andrés, “Gene selection and classification of microarray data using random forest,” BMC Bioinformatics, vol. 7, article 3, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Baek, H. Moon, H. Ahn, R. L. Kodell, C.-J. Lin, and J. J. Chen, “Identifying high-dimensional biomarkers for personalized medicine via variable importance ranking,” Journal of Biopharmaceutical Statistics, vol. 18, no. 5, pp. 853–868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Baek, C.-A. Tsai, and J. J. Chen, “Development of biomarker classifiers from high-dimensional data,” Briefings in Bioinformatics, vol. 10, no. 5, pp. 537–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. D. Patel, P. B. Bach, and M. G. Kris, “Lung cancer in us women: a contemporary epidemic,” Journal of the American Medical Association, vol. 291, no. 14, pp. 1763–1768, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Haslinger, N. Schweifer, S. Stilgenbauer et al., “Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status,” Journal of Clinical Oncology, vol. 22, no. 19, pp. 3937–3949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Homsi, M. Kashani-Sabet, J. L. Messina, and A. Daud, “Cutaneous melanoma: prognostic factors,” Cancer Control, vol. 12, no. 4, pp. 223–229, 2005. View at Google Scholar · View at Scopus
  17. Y. Zhao and R. Simon, “BRB-ArrayTools Data Archive for human cancer gene expression: a unique and efficient data sharing resource,” Cancer Informatics, vol. 6, pp. 9–15, 2008. View at Google Scholar · View at Scopus